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Abstract

Individual health care expenditures have complex non-normal dis-
tributions with severe positive skewness and leptokurtosis. These fea-
tures present severe challenges to reliable modeling of expenditures for
prediction purposes. We compare a variety of methods using quasi-
experimental techniques. Our quasi-experiments combine the distri-
butional realism of actual data on health care expenditures with the
reliability of Monte Carlo experimental results. We find that models
based on Gamma densities predict substantially better than models
based on linear regression with and without transformation of the de-
pendent variable. Models based on finite mixtures of Gamma densities
show further improvement in predictive properties.
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1 Introduction

A major concern of policymakers in the United States is the rapidly increas-

ing cost of health care. Most cognoscenti believe that significant resources

are spent on medical care that is not productive at the margin. Two im-

portant reasons for non-optimal use of resources are adverse selection into

health insurance plans and moral hazard in the use of care. Although both

these issues have been analyzed theoretically and empirically, only recently

have practical attempts been made to reduce their effects using risk adjust-

ment systems. Recently, some case studies describing the recent experiences

of private sector employers with various risk adjustment systems have been

published (e.g., Bertko et al., 1998, Dunn et al., 1998, Knutson et al., 1998).

We believe there are two important reasons for the relatively few at-

tempts at designing and implementing risk adjustment systems. First, ex-

pected net plan revenues increase from adjusting payments based on enrollee

risk when three market conditions are met (Frank and Rosenthal, 2001);

plans must share in the costs of high expenditure patients, they must com-

pete for enrollees, and they must believe that they are likely to attract an

unfavorable mix of patients with high expenditures. Most plans face these

conditions in very muted fashion. Consequently, market forces for risk ad-

justment of health care expenditures are relatively weak. Second, health care

expenditures are so skewed, with rare high cost events, that most enrollees

are ‘healthier than average’, a real life Lake Wobegon effect. This, com-

bined with the fact that health care expenditures have a density not easily

characterized by known parametric forms (Jones, 2001), makes predicting

expenditures adequately a very difficult exercise.

Our research on modeling health care expenditures has a statistical fo-
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cus, but it is motivated by the practical issues of building risk adjustment

systems. It extends the literature in two important ways. First, we pro-

pose the use of finite mixture models for estimating health care expendi-

tures which can serve as approximations to unknown probability densities

(Lindsay, 1995; McLachlan and Peel, 1999). Second, we conduct an exten-

sive evaluation of a number of econometric models in a quasi-experimental

framework which combines the rigor of Monte Carlo experiments with the

distributional realism of actual data, which is what the models must fit in

practice. Although our paper focuses on the distribution of health care ex-

penditures, the methods are readily applicable in other contexts where the

variable of interest has complex distributional properties. The distribution

of income is a leading example of such a variable (McDonald and Mantrala,

1995).

Earlier work on modeling individual health care expenditures focused on

the use of transformations of the dependent variable in linear regression mod-

els to improve the quality of estimates and predictions. Recent research has

considered generalized linear models for estimating expenditures. Blough,

Madden and Hornbrook (1999) demonstrate the feasibility of such models

but do not directly compare their models with standard approaches. Man-

ning and Mullahy (2001) show that the generalized linear model based on

the Gamma density has promise, but also that some classes of generalized

linear models are considerably more sensitive to data problems than OLS. In

general, known, parametric densities are inadequate approximations to the

true densities for health care expenditures, and robust estimators typically

sacrifice precision.

Finite mixture models are, in principle, semiparametric and can approx-

imate any probability density. In practice, however, they should be viewed
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as flexible extensions of parametric models, potentially providing a compro-

mise between strongly parametric and fully semiparametric models. Finite

mixture models provide a natural and intuitively attractive representation

of heterogeneity that is clustered in a finite number of latent classes. The

choice of the number of components in the mixture determines the number of

classes, and the functional form for the density accommodates heterogeneity

within each component. A consistent empirical finding is that distributions

for unobservables can be approximated by low-dimensional finite mixtures.

(Heckman, 2001).

Deb and Trivedi (1997, 2002) have demonstrated the superior perfor-

mance of finite mixtures in modeling counts of health care utilization. Deb

and Holmes (2001) show that a finite mixture model for positive mental

health care expenditures provides more reliable estimates than does a log

regression model. Consequently, we evaluate a class of finite mixture models

for health care expenditures in our quasi-experimental approach.

We develop a quasi-experimental approach for evaluating models of un-

known and complex data generating processes. As in Monte Carlo experi-

ments, confidence in results is achieved through replication. However, our

experimental samples are not drawn from known distributions. Such data

are unlikely to capture all the relevant features of the empirical distribution

of health care expenditures. Instead, we assume that all relevant features

of the empirical distribution of health care expenditures are present in the

very large dataset we use so that sampling from it is equivalent to sam-

pling from the distribution of health care expenditures in the population.

The random samples from this population also represent “ideal” enrollees

in the sense that there is no selection into the plan. To the extent that

these data mimic features of health care expenditures in other populations,
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our quasi-experimental samples will be informative for models of health care

expenditures in those populations.

In the following section of the paper, we formally present the competing

models used in this paper and discuss model comparison strategies. The data

are described in section 3 and empirical results in section 4. We conclude in

section 5.

2 Methods

2.1 Econometric Models

Let yi denote health care expenditures for person i and xi denote the set of

covariates including the intercept. We estimate the following econometric

models.

A linear conditional mean model is estimated using OLS so that

bβ = argmin
NX
i=1

{yi − xiβ}2 , (1)

byp = xpbβ,
where byp denotes a conditional prediction. OLS with a linear mean has the
desirable feature that it provides an unbiased predictor of health expendi-

tures regardless of the distribution of the error term and the presence of

heteroskedasticity. Nevertheless, given the extreme skewness of health care

expenditures, it is possible that point forecasts obtained from this model

may not be very precise. Note that this model is equivalent to the GLM

model based on the normal density with linear link.

Two widely applied alternatives to the linear mean in the OLS context
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use transformations of the dependent variable. In the log model,

bβ = argmin
NX
i=1

{log(yi)− xiβ}2 , (2)

byp = exp(xpbβ) · 1
N

NX
i=1

exp
n
log(yi)− xibβo ,

and in the square root model,

bβ = argmin
NX
i=1

{√yi − xiβ}2 , (3)

byp = (xpbβ)2 + 1

N

NX
i=1

n√
y − xibβo2 ,

where the second term in each formula for the conditional prediction is a

nonparametric smearing factor needed to retransform the prediction into

the raw scale. Although these transformed models are designed to account

for the skewness in health expenditures and the retransformation factors do

not depend on normality of the errors, their predictions are not robust to

heteroskedasticity in the transformed scale.

The model with the linear mean has an added advantage over models

with complex mean specifications in that the regression coefficients are the

average incremental costs of each disease and hence can be used to assess

the face validity of the regressions. If used for rate setting, for example, plan

managers would be very uncomfortable with negative regression coefficients

or coefficient values outside the range of their intuitive expectations. So,

often such models are recalibrated in ad hoc fashion until no “offending”

coefficients remain (Ellis, R. P., personal communication). On the other

hand, while the log and square root models generate positive conditional

mean forecasts regardless of whether individual coefficients are positive or
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negative, the linear mean model without such ad hoc adjustments may gen-

erate negative predictions. To assess the consequences of imposing such

face validity, i.e., restricting the conditional mean to be positive, we use the

estimates from the linear OLS model to generate predictions of the form

byp = max(xpbβ, 0). (4)

The second set of models are in the GLM class (McCullagh and Nelder,

1989). These models require only correct specification of the conditional

mean for consistency and are quite flexible. We estimate GLMs based on

the Gamma density as these have been shown to have desirable properties.

We consider linear and squared mean specifications so that

bβ = argmax
NX
i=1

½
− yi
xiβ

+ log

µ
1

xiβ

¶¾
, (5)

byp = xpbβ
and

bβ = argmax
NX
i=1

½
− yi
(xiβ)2

+ log

µ
1

(xiβ)2

¶¾
, (6)

byp = (xpbβ)2,
respectively.

Finally, we estimate 2 models that are based on finite mixtures of den-

sities. The random variable yi in a finite mixture model is assumed to be a

drawn from an additive mixture of C distinct subpopulations or components

in proportions π1, ...,πC , where
PC
j=1 πj = 1, πj > 0 (j = 1, ..., C). The

mixture density for observation i, i = 1, ..., n, is given by

f(yi|θ) =
C−1X
j=1

πjfj(yi|θj) + πCfC(yi|θC), i = 1, ..., n, (7)
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where πC = 1−
PC−1
j=1 πj . Each term in the sum on the right-hand side is the

product of the mixing probability πj and the component density fj(yi|θj)
which has parameters θj . In general, the πj are unknown and estimated

along with θj . A labelling restriction that π1 ≥ π2 ≥ .... ≥ πC , which can

always be satisfied by rearrangement, is required for identification (normal-

ization). Given our success with the gamma density in preliminary analysis,

we consider models based on mixtures of gamma’s:

bβj , bπj = argmax
NX
i=1

log


C−1X
j=1

πj · exp
µ
− yi
xiβj

¶µ
1

xiβj

¶ , (8)

byp =
C−1X
j=1

bπjxfbβj, j = 1, 2, ..., C.

where βj and πj are estimated jointly.

We consider finite mixture models with linear mean specifications and

two or three gamma component densities. Although both the specification of

the mean and the number of components are trivially modified in principle,

we restrict our attention to linear mean specifications for reasons of face

validity discussed above and to two and three components for computational

feasibility given the large scale of our study. Note that the model given by (8)

is a generalization of (5); however, the two- and three-component mixture

models could possibly perform worse than their one-component (degenerate)

counterparts in finite samples.

Table 1 provides labels for each of the models considered in our experi-

ments along with brief descriptions of the estimation method and prediction

functions. The labels are subsequently used in our description of the results.
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2.2 Experimental Design

The study design is quasi-experimental. Monte Carlo principles are used to

create ‘experimental’ samples and confidence in results is achieved through

experimental replication. However, unlike ‘true’ Monte Carlo experiments,

our ‘experimental’ samples are drawn from real data with unknown distri-

bution rather than artificial data drawn from a known distribution. The

complex data generating process for health care expenditures is well known

not to follow any known parametric distribution and that characteristics of

extreme observations make predicting health care expenditures a difficult

exercise. Therefore, if we used data drawn from a known distribution in our

study, it would likely not capture all the features of the empirical distribu-

tion of health care expenditures, and would have the additional drawback

that it would always be possible to include an econometric model in the

study that would a priori be closer to to the true data generating density

(or even be correctly specified). Instead, we assume that all relevant fea-

tures of the empirical distribution of health care expenditures are present in

a very large dataset we use so that sampling from it is equivalent to sampling

from the distribution of health care expenditures in the population. To the

extent that these data mimic features of health care expenditures in other

populations, our quasi-experimental samples will be informative for models

of health care expenditures in those populations.

The dataset comes from FY2000 expenditures by users of the US De-

partment of Veterans Affairs health care system. The 2,979,760 observations

were randomly split into two groups: 1,500,000 observations were assigned

to the estimation group and 1,000,000 to the prediction group. Note that

these sub-groups themselves are quite large and reasonably might be treated
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as pseudo-populations. We were restricted to these sizes by computer mem-

ory considerations. Samples of size N ∈ {10,000 50,000 100,000 200,000

500,000} were drawn from the estimation group using simple random sam-

pling with replacement. Note that most datasets from public or private

populations in managed care plans or health care provider systems in the

US fall in the range of our sample sizes (see e.g., Dunn, 1998, who analyzes

risk adjustments in four samples of 70,000, 115,000, 120,000 and 240,000).

The parameters of the models described above were estimated for each sam-

ple and saved. This process was repeated 20 times for each sample size. The

parameters obtained from each replication were used to calculate conditional

means using all million observations from the prediction group.

Two statistics were calculated to evaluate the quality of the predictions:

the mean prediction error

MPE =
1

Nf

NfX
i=1

(byf − yi) , (9)

and the mean absolute prediction error

MAPE =
1

Nf

NfX
i=1

|byf − yi| . (10)

MPE is a measure of predictive accuracy on average (across observations)

whileMAPE is a measure of predictive accuracy for individual observations.

We also calculated each of these statistics after trimming the prediction

sample by eliminating 0.5% of the largest expenditures (Nf = 995, 000). We

did this for two reasons. First, each of these statistics may be unduly affected

by a very small fraction of extremely large expenditures in the prediction

sample and these extreme observations may not regularly appear in smaller

populations. Second, the design of many pricing schemes include reinsurance
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for enrollees or patients with very large expenditures so models should be

evaluated on the observations not eligible for reinsurance.

2.3 Response Surfaces

For any statistic of interest, ideally one would like to compute analytic for-

mulae for its predicted values as a function of experimental characteristics.

For example, if the statistic of interest is bias and one is interested in deter-

mining how bias decreases as the sample size increases, the ideal would be an

analytic formula that relates bias to sample size. If these formulae are not

known, it is possible to approximate them using polynomial approximations

to the true functional forms. Regressions of these polynomial approxima-

tions are called response surfaces. Maasoumi and Phillips (1982), Hendry

(1982), and Davidson and MacKinnon (1993) have detailed discussions of

the merits of response surface methodology. In our context, one desirable

feature of response surface methodology is that it facilitates understand-

ing of experimental evidence because large amounts of experimental data

can be summarized using simple functional forms. It also provides applied

researchers a simple tool for computing outcomes at points in the design

space that are not included in the experimental study. Another advantage,

especially for computationally intensive processes, is that a large number of

replications is not required. Each of these advantages of response surface

methodology is important in the context of our study relative to simple tab-

ulation of the results: we have many design points (model×sample size),
interest in performance at other sample sizes, and very computationally in-

tensive estimation.

Let the models in this study be numbered by m = 1, 2, ..., 8, let s =

1, 2, ..., 5 denote the different sample sizes and allow r = 1, 2, ..., 20 replica-
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tions at each experimental design point. Let d[m] denote dummy variables

indicating the model on the basis of which the statistic, MPE or MAPE,

was calculated. Let Ns denote the sample size used for estimation of the

model. The response surfaces for MPE are specified as

MPEmsr =
8X

m=1

α[m]d[m] +
8X

m=1

γ[m]d[m]

Ns
+ umsr, (11)

where α[m] and γ[m] are regression coefficients. The second term in the

right hand side of the regression reflects the fact that MPE is expected to

decline at the rate Ns. Note that in each response surface regression, α[m]

denotes the asymptotic expected value of MPE for model m. Expected

MPE for desired finite sample sizes can be calculated by plugging in those

sample sizes.

MAPE only takes positive values, so its response surface is specified in

logarithms, i.e.,

log(MAPEmsr) =
8X

m=1

α[m]d[m] +
8X

m=1

γ[m]d[m]

Ns
+ umsr. (12)

Now differences in values of α[m] represent percentage differences inMAPE

across models.

The regression specification for MPE evaluates models in terms of their

ability, on average, to predict average expenditures in large samples. The

regression specification forMAPE evaluates models in terms of their ability,

on average, to predict individual expenditures. It is possible that a model

which predicts average expenditures well, on average across replication sam-

ples, may not predict average expenditures well in any particular replication

sample, i.e., the dispersion of the distribution of MPE is also an important

evaluation criterion. To address this issue, we estimate a third regression for
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the logarithm of absolute deviations of MPE, denoted ADMPE, specified

as

log(ADMPE) = log
¯̄
MPEmsr −MPEms.

¯̄
(13)

=
8X

m=1

α[m]d[m] +
8X

m=1

γ[m]d[m]

Ns
+ umsr,

where

MPEms. =
1

20

20X
r=1

MPEmsr (14)

is the averageMPE across replications within an experimental design point.

3 Data

The US Department of Veterans Affairs (VA) operates the largest health

care system in the US with 163 hospitals, more than 800 community and

facility-based clinics, 135 nursing homes, and other facilities. With a medical

care budget of more than $19 billion in FY2000, VA provided care to 3.8

million unique users, 3,000,499 of whom were provided care under priority for

service connected disabilities, meeting an income/wealth based means test,

or from a variety of smaller health care need and veteran specific reasons

and thus had full access to the health care services offered. 2,979,760 of

these patients have measured costs accurate enough to be included in the

patient sample that serves as the sampling population for our analysis as

described above.

In recent years, the most important advances in risk adjusting patient

populations to explain health care expenditures have employed diagnostic

information to characterize disease patterns. There are two basic strands of

analysis that flow from this work. Most commonly, analysis has focused on

predicting the health care utilization of enrolled patient populations next
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year from diagnoses and other information (possibly even including costs)

collected this year. This is called prospective modeling. However, a growing

application of risk adjustment is in helping integrated health care delivery

systems or insurers understand differences in the risk of current populations,

for budget allocation or rate setting purposes. We employ this type of

concurrent modeling in this paper.

We provide summary statistics for costs in Table 2. The estimates are

based on a sample size of 2,500,000 that comprise the combination of our

estimation and prediction samples. As is well known for health care ex-

penditures in other contexts, expenditures for the VA population are also

highly skewed and leptokurtic. When logarithms of health care costs are

examined, skewness and kurtosis are considerably smaller but still statis-

tically significant. As a comparison, we also report summary statistics of

health care expenditures for a representative sample of the US population in

1996 obtained from the Medical Expenditure Panel Survey (MEPS) and for

the sub-sample of MEPS respondents enrolled in Medicare. The results in

Table 2 show that the statistical characteristics of health care expenditures

of the Medicare population are very similar to those of the VA population

and that the distribution of health care expenditures for the US popula-

tion overall are considerably more skewed and leptokurtic than either of the

sub-populations. Note that as the data are refined into more homogeneous

populations, the skewness and kurtosis moment measures fall.

To characterize the explainable portion of variation in expenditures, we

employ Diagnostic Cost Group (DCG)/Hierarchical Coexisting Conditions

(HCC) models (Ellis, et al. (1996), Ash, et al. (1998), Pope, et al. (1998))

to group ICD-9-CM diagnoses into HCC indicator groups as explanatory

variables for health care expenditures. This model takes the 15,000 ICD-9-
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CM codes, groups them into categories and then places the groups into body

system/clinical condition specific hierarchies. These hierarchies allow some

multiple HCC’s and disallow others, helping to address overfitting problems

when people with complex diagnoses also by definition have less complex

ones in the same hierarchy. Out of the 118 HCC’s in Version 5 of the DCG

model, we employ 42 HCC’s in our model that appear with a frequency of at

least 1 percent in the sample of 2,500,000. Brief descriptions of the HCC’s

and their sample frequencies are reported in Table 3.

4 Results

As described above, 5 different sample sizes were considered for estimation

and each experiment was replicated 20 times. OLS estimates are trivially

obtained. The log likelihood functions of GLM models with gamma base-

line density are typically well behaved so ML estimation is easy to conduct,

though obviously computationally intensive for some of the larger sample

sizes. The log likelihood functions of finite mixture models are not so well

behaved in principle. They can have multiple optima. In practice, one can

overcome this potential problem simply by experimentating with starting

values, although more complex algorithms which attempt to avoid conver-

gence to local optima are also available. But in this experimental setting, it

was not feasible to ensure convergence to the global maximum in each case.

For the two-component mixture model, we used starting values based on

the converged estimates of the Gamma model (degenerate mixture) which

it generalized. For the three-component mixture model, we used starting

values based on the converged estimates of the two-component mixture. Al-

though these are reasonable starting values, convergence to a local optimum
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cannot be ruled out. Therefore, the results for the finite mixture models may

be contaminated by non-maximized estimates, and thus should be treated

as the worst case scenarios.

The experimental samples of MPE and MAPE consist of 800 observa-

tions each. Response surface regressions specified by equations (11) − (13)
were estimated and the parameter estimates are reported in Table 4. In

each case in the regressions of MPE and MAPE, the R2’s are over 0.99.

For the deviations of MPE regressions, the R2’s are over 0.90. Overall, the

response surfaces are very well specified and capture most of the variation

across experimental design points.

The asymptotic expected values ofMPE indicate how the average value

of predicted health care expenditures from a particular model compares to

the average health care expenditure in the prediction sample. Linear and

square root regression models estimated by OLS have negligible bias when

evaluated using all observations in the prediction sample. All other models

have substantially larger biases. Predictions from both finite mixture models

are downward biased, but FM3-Γ-linear has a lower bias than FM2-Γ-linear.

Once the prediction sample is trimmed, the finite mixture models [FM2-Γ-

linear and FM3-Γ-linear ] have the smallest biases of all models. FM2-Γ-

linear is clearly the best model: it is virtually unbiased. Both ols-linear and

ols-square root are upward biased. These results taken together indicate

that the lower bias of the linear OLS model is due to its ability to predict

the largest expenditures well. Note also that the OLS model with non-

negative predictions (ols-linear>0 ) has a significant bias in each case and it

overpredicts by about $60 relative to the standard OLS model (ols-linear)

unless the prediction sample is trimmed.

As discussed above, the choice of functional form for the specification of
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the conditional mean is important for a variety of reasons. Although the

linear conditional mean has virtues in its simplicity and ease of interpreta-

tion, the squared and exponential conditional means have other virtues. The

results show that the log regression model performs surprisingly poorly vis-

a-vis the alternatives. It produces substantially upward biased predictions.

In preliminary work we found that the gamma model with exponential link

also performed very poorly hence was eliminated from further consideration.

We have chosen to include the log regression model because it is a leading

model among those used in existing empirical studies. Within the family of

linear regression models, the linear and square root models have very similar

MPE’s. It is not possible to discriminate between the two models on this

basis. In the case of GLM models based on the Gamma density, there are

differences in MPE’s between linear and squared links, but neither domi-

nates.

The asymptotic expected values of log(MAPE) indicate how values of in-

dividual predicted health care expenditures from a particular model compare

to the values of actual health care expenditures in the prediction sample.

Models with lower values of log(MAPE) predict individual expenditures

better than models with higher values. The results in Table 4 show that the

two-component finite mixture model with gamma densities dominates the

rest by the MAPE criterion regardless of whether the prediction sample is

trimmed or not. In the untrimmed case, FM2-Γ-linear has an 11 percent-

age point lower MAPE than the linear regression model and 2 percentage

point lower MAPE than Γ-linear. Interestingly, the MAPE of FM3-Γ-

linear is worse than FM2-Γ-linear. There are two potential reasons for this

decline in performance. First, it is possible that this is manifestation of a

MPE −MAPE trade-off which appears is many statistical contexts. In
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our context, it would most likely be due to the fact that by increasing the

ability of the model to predict the small number of high expenditures well,

the three-component model was doing worse at predicting the large number

of lower expenditures. Second, it is possible that the parameter estimates of

three-component model are based, in a substantial fraction of cases, on log

likelihood values that are not globally maximized. This is plausible because

the log likelihood function of the three-component model has multiple op-

tima, in principle. Unfortunately, a closer investigation of these possibilities

is beyond the scope of this paper.

The OLS model with logarithmic transformation continues to perform

very poorly. The MAPE from the square root model is always lower than

the MAPE from the linear model in the regression case, but the relative

performance of the linear and squared conditional means are reversed in the

Gamma GLM models.

The regressions for ADMPE evaluate models in terms of the dispersion

in the distribution ofMPE across replication samples. The results, reported

in the last two columns of Table 4, show that, asymptotically, ols-square root,

Γ-linear and FM2-Γ-linear have the smallest deviations. The simple linear

regression model (ols-linear) is not far behind. Once again, models from the

Gamma family are among the top performers.

The finite sample values of MPE, MAPE and ADMPE, and their

rates of convergence to the asymptotic values, also are described by the

estimates in Table 4, but these are not transparent. Therefore, in Figure 1,

we plot the expected values of MPE, log(MAPE), log(ADMPE) against

estimation-sample size using trimmed and untrimmed prediction samples

for three of the leading models with linear mean specifications - ols-linear,

Γ-linear and FM2-Γ-linear. As was evident from the regression estimates,
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ols-linear has the lowest bias when prediction samples is untrimmed, but

FM2-Γ-linear has smaller bias when the prediction sample is trimmed. The

rates of convergence of ols-linear and Γ-linear to the asymptotic MPE are

very quick; 15,000-20,000 observations appear to be sufficient. On the other

hand, convergence is slower for the finite mixture model, as expected. But

even for FM2-Γ-linear, sample sizes of 30,000-40,000 are sufficient to ensure

asymptotic values of MPE.

MAPE converges at similar rates. The advantages of the models based

on the gamma density vis-a-vis ols-linear are dramatic. The gains from

using FM2-Γ-linear over ols-linear is in the order of 10-15 percentage points

when estimation samples 20,000 or more observations are available. In the

context of the budgets at stake in many rate-setting exercises, these gains

are substantial.

Finally, DAMPE is smallest for FM2-Γ-linear. Along this dimension,

however, the three leading models are much more similar than along the

MPE or MAPE dimensions.

5 Conclusion

Many health outcome variables in health economics deviate from known

parametric densities even upon transformation and reliable estimation meth-

ods for practical purposes continues to be an unsettled issue. The quasi-

Monte Carlo experiments reported in this paper subject a number of plau-

sible econometric models to tests in a variety of dimensions. The results

demonstrate that models with linear mean specifications perform at least

as well as models with more complex means or those that require retrans-

formation. Linear regression models estimated by ordinary least squares
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produce unbiased predictions, but individual predictions are relatively im-

precise. Unbiased predictions in themselves are an inadequate criterion for

a good econometric model because there exist incentives for providers to

miscode, misreport, etc. when payments deviate substantially from costs.

The ideal standard involves predicting individual expenditures as well as

possible given the data. A GLM model based on the Gamma density with a

linear link has reasonable bias properties and superior individual predictions

vis-a-vis the linear regression model. A finite mixture model constructed us-

ing two Gamma densities with linear means has lower bias when the largest

half percent of observations are removed from the prediction sample. The

two-component finite mixture model has superior individual predictions in

both trimmed and untrimmed prediction samples relative to the GLMmodel

based on the Gamma density. Adding a third component to the mixture

model appears to reduce biases but at the cost of poorer individual predic-

tions.

As Frank and Rosenthal (2001) suggest, there are other options that

health plans and other entities potentially interested in predictive risk ad-

justment have to attempt to reduce adverse selection. Such selection can

be favorable, in trying attract systematically overpredicted groups, or un-

favorable, in avoiding systematically underpredicted groups. To the extent

that market and regulatory barriers to use of risk adjustment models con-

tinue to decline in the future, more and more attention will be paid to the

need to accurately model these complex distributions. Careful analytic and

theoretical work comparing problems of bias with problems of predicting

individual expenditures would help resolve the need to develop appropriate

loss functions to optimize particular strategies for risk adjustment.

In practice, estimation of finite mixture models raises some computa-
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tional difficulties, especially as the number of points of support in the mix-

ture distribution increases. This paper shows that there are substantial gains

in predictive performance associated with the use of finite mixture models

with two components, The finding is consistent with conventional wisdom

and empirical evidence in the literature on finite mixture models that two

to four points of support are typically sufficient. A small number of com-

ponents is more likely to be sufficient if one starts with a baseline density

that forms a reasonable first approximation to the true data density. There-

fore, given the advances in computer hardware and statistical computing

technology, the computational burden of finite mixture models should not

discourage their use.
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Table 1
Description of Models

Label Estimation method Prediction function
1 ols-linear OLS xiβ

2 ols-log OLS exp(xpbβ) · 1N PN
i=1 exp

n
log(yi)− xibβo

3 ols-square root OLS (xpbβ)2 + 1
N

PN
i=1

n√
y − xibβo2

4 ols-linear>0 OLS max(xiβj , ε)
5 Γ-linear ML, Γ density xiβ
6 Γ-square ML, Γ density (xiβ)

2

7 FM2-Γ-linear ML, mixture of 2 Γ’s
PC−1
j=1 bπjxfbβj, j = 1, 2

8 FM3-Γ-linear ML, mixture of 3 Γ’s
PC−1
j=1 bπjxfbβj, j = 1, 2, 3
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Table 2
Summary Statistics of Costs

Cost/$1000 log(Cost/$1000)
VA MEPS VA MEPS

All Medicare All Medicare
N 2500000 18490 2588 2500000 18490 2588
Mean 5.342 2.372 6.185 0.411 -0.564 0.738
Median 1.537 0.527 2.097 0.430 -0.641 0.741
Std Deviation 14.804 8.572 12.521 -0.102 1.637 1.549
Skewness 9.717 21.287 6.388 -0.102 0.212 -0.201
Kurtosis 203.512 850.131 68.772 0.697 -0.151 0.161
99th percentile 70.322 29.852 58.440 4.253 3.396 4.068
95th percentile 22.612 9.491 25.773 3.118 2.250 3.249
75th percentile 3.839 1.699 5.883 1.345 0.530 1.772
25th percentile 0.586 0.180 0.798 -0.534 -1.715 -0.225
5th percentile 0.107 0.180 0.149 -2.235 -3.147 -1.904
1st percentile 0.032 0.180 0.038 -3.442 -4.605 -3.270
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Table 3
Description of Covariates

Variable Description Frequency
HCC004 Other Infectious Disease 0.132
HCC006 High Cost Cancer 0.011
HCC007 Moderate Cost Cancer 0.012
HCC008 Low Cost Cancers/Tumors 0.050
HCC013 Diabetes with Chronic Complications 0.037
HCC014 Diabetes with Acute Complications 0.018
HCC015 Diabetes with No or Unspecified Complications 0.128
HCC017 Moderate Cost Endo/Metab/Fluid-Electrolyte 0.026
HCC020 High Cost Chronic Gastrointestinal 0.010
HCC022 Moderate Cost Gastrointestinal 0.048
HCC023 Low Cost Gastrointestinal 0.177
HCC025 Rheumatoid Arthritis/Connective Tissue 0.018
HCC028 Blood/Immune Disorders 0.013
HCC029 Iron Deficiency and Other Anemias 0.048
HCC030 Dementia 0.028
HCC031 Drug/Alcohol Dependence/Psychoses 0.065
HCC032 Psychosis/Higher Cost Mental 0.088
HCC033 Depression/Moderate Cost Mental 0.070
HCC042 High Cost Neurological 0.022
HCC043 Moderate Cost Neurological 0.049
HCC044 Low Cost Neurological 0.042
HCC048 Congestive Heart Failure 0.059
HCC049 Heart Arrhythmia 0.043
HCC051 Other Acute Ischemic Heart Disease 0.011
HCC053 Valvular and Rheumatic Heart Disease 0.022
HCC058 High Cost Cerebrovascular Disease 0.012
HCC059 Low Cost Cerebrovascular Disease 0.043
HCC060 High Cost Vascular Disease 0.052
HCC063 Other Circulatory Disease 0.024
HCC064 Chronic Obstructive Pulmonary Disease 0.118
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Table 3 (continued)
Description of Covariates

Variable Description Frequency
HCC067 Low Cost Pneumonia 0.016
HCC075 Low Cost Ear, Nose, and Throat 0.184
HCC078 Renal Failure 0.020
HCC080 Other Urinary System 0.070
HCC091 Chronic Ulcer of Skin 0.017
HCC097 Other Injuries and Poisonings 0.111
HCC098 Complications of Care 0.017
HCC099 Major Symptoms 0.156
HCC100 Minor Symptoms, Signs, Findings 0.323
HCC113 Elective/Aftercare 0.129
HCC116 Rehabilitation 0.036
HCC118 History of Disease 0.063
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Table 4
Response Surface Regressions

Dependent Variable MPE log(MAPE) log(ADMPE)
Prediction Sample Untrimmed Trimmed Untrimmed Trimmed Untrimmed Trimmed
α[ols-linear] -0.010 0.592 1.516 1.380 -4.042 -4.094

(0.014) (0.013) (0.002) (0.002) (0.147) (0.144)
α[ols-log] 3.932 3.965 2.038 1.908 -3.029 -3.147

(0.014) (0.013) (0.002) (0.002) (0.147) (0.144)
α[ols-square root] -0.013 0.604 1.463 1.314 -4.178 -4.170

(0.014) (0.013) (0.002) (0.002) (0.147) (0.144)
α[ols-linear>0] 0.050 0.653 1.502 1.364 -4.089 -4.145

(0.014) (0.013) (0.002) (0.002) (0.147) (0.144)
α[Γ-linear] -0.417 0.210 1.431 1.273 -4.107 -4.132

(0.014) (0.013) (0.002) (0.002) (0.147) (0.144)
α[Γ-square] 0.138 0.716 1.448 1.307 -3.958 -4.012

(0.014) (0.013) (0.002) (0.002) (0.147) (0.144)
α[FM2-Γ-linear] -0.641 -0.002 1.409 1.244 -4.150 -4.154

(0.014) (0.013) (0.002) (0.002) (0.147) (0.144)
α[FM3-Γ-linear] -0.411 0.217 1.431 1.274 -3.043 -3.099

(0.014) (0.013) (0.002) (0.002) (0.147) (0.144)
γ[ols-linear] -0.102 -0.087 0.156 0.175 11.540 10.852

(0.312) (0.281) (0.035) (0.039) (3.210) (3.131)
γ[ols-log] 1.635 1.367 0.195 0.189 19.164 17.902

(0.312) (0.281) (0.035) (0.039) (3.210) (3.131)
γ[ols-square root] -0.027 -0.019 0.036 0.039 14.549 13.820

(0.312) (0.281) (0.035) (0.039) (3.210) (3.131)
γ[ols-linear>0] -0.061 -0.046 0.151 0.169 11.383 12.121

(0.312) (0.281) (0.035) (0.039) (3.210) (3.131)
γ[Γ-linear] 0.134 0.142 0.094 0.108 13.928 13.494

(0.312) (0.281) (0.035) (0.039) (3.210) (3.131)
γ[Γ-square] 0.130 0.150 0.107 0.118 18.113 18.233

(0.312) (0.281) (0.035) (0.039) (3.210) (3.131)
γ[FM2-Γ-linear] 1.389 1.368 0.195 0.239 13.262 12.122

(0.312) (0.281) (0.035) (0.039) (3.210) (3.131)
γ[FM3-Γ-linear] 1.434 1.403 0.181 0.223 6.089 5.974

(0.312) (0.281) (0.035) (0.039) (3.210) (3.131)

R2 0.994 0.995 0.999 0.999 0.901 0.908
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Notes:
Standard Errors are in parentheses.
MPE is the Mean Prediction Error. The regression specification is given in equa-
tion (11).
MAPE is the Mean Absolute Prediction Error. The regression specification is
given in equation (12).
ADMPE is the Absolute Deviation of Mean Prediction Error. The regression
specification is given in equation (13).
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Figure 1: Properties of Prediction Errors
Untrimmed Prediction Sample Trimmed Prediction Sample

Mean Prediction Error

Mean Absolute Prediction Error

Absolute Deviations of Mean Prediction Error

Key: –– ols-linear – – Γ-linear - - FM2-Γ-linear
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