
    * We wish to thank David Bradford, Amitabh Chandra, Ted Joyce, Steve Lehrer, Ellen Meara, Doug
Staiger and Joe Newhouse, the editor, and an anonymous referee for suggestions that have improved the
paper substantially.  In addition, we thank participants at seminars at University of Alabama at
Birmingham, Boston University, Dartmouth College, Hunter College, University of New Hampshire, and
RAND and at the International Health Economics Association Conference in York, UK., for their
comments.

    ** Corresponding Author: Department of Economics, Hunter College, City University of New York,
695 Park Avenue, New York, New York 10021, USA; Phone: (212)772-5435; Fax: (212)772-5398;
Email: partha.deb@hunter.cuny.edu

Is Prenatal Care Really Ineffective?
Or, is the 'Devil' in the Distribution?*

Karen Smith Conway
Department of Economics, University of New Hampshire

and

Partha Deb**

Department of Economics, Hunter College, CUNY

September 2004

Abstract

Prenatal care should improve infant health, yet research frequently finds only weak effects. If
there are two kinds of pregnancies, ‘complicated’ and ‘normal’ ones, then combining these
pregnancies may lead prenatal care to appear ineffective.  Data from the NMIHS offers
compelling evidence.   The standard 2SLS approach yields obviously bimodal residuals and
frequently insignificant prenatal care coefficients.  In contrast, estimating birth weights with a
finite mixture model yields estimates revealing that prenatal care has a substantial effect on
‘normal’ pregnancies.  Our Monte Carlo experiment confirms that ignoring even a small
proportion of ‘complicated’ pregnancies can lead prenatal care to appear unimportant.
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It is widely believed that expanding prenatal care should improve infant health; indeed,

increasing the prenatal care of low income women is part of the motivation behind the recent

Medicaid expansions. Yet, economic research typically finds weak, if any, effects of prenatal

care on infant health (e.g., Currie and Grogger, 2000; Kaestner, 1999; and Grossman and Joyce,

1990).  Some of the reasons given include inadequate measures of prenatal care and difficulties

in modeling its endogeneity.  We offer another explanation – that there are essentially two kinds

of pregnancy outcomes, ‘complicated’ and ‘normal’ ones.  Our research investigates this

possibility by extending the standard infant health production model to include a finite mixture

of distributions of birth outcomes. 

Combining ‘complicated’ and ‘normal’ pregnancies, as past research does, could lead

prenatal care to appear ineffective for at least two reasons.  First, complicated pregnancies

typically entail a large number of prenatal care visits, but yield poorer outcomes.  Most research

considers these health complications in modeling prenatal care by including information on past

pregnancies in both the prenatal care and birth weight equations.  This remedy is most effective

when the onset of prenatal care rather than the number of visits is used. 

However, fully recognizing such complications requires different estimation of the birth

weight equation.  If there are two kinds of  pregnancies, then the outcomes may not adhere to a

single distribution, even after controlling for all observed factors.  Furthermore, observed factors

such as prenatal care and other maternal behaviors may have different effects on each type of

pregnancy.  This possibility has been strongly suggested in the medical literature (e.g., Paneth,

1995; and Alexander and Korenbrot, 1995).  Low birth weight is typically due to retarded

growth and/or preterm birth.  Clinical evidence suggests that preterm births are quite difficult to

prevent, and that even such typically important maternal behaviors as smoking and drinking are

more closely linked to restricted fetal growth rather than shortened gestation (Goldenberg and

Rouse, 1998). Prenatal care is likewise believed to do little to prevent preterm birth, but rather is

most effective in preventing retarded growth in near full term infants  (e.g., Alexander and
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Korenbrot, 1995 and Shiono and Behrman, 1995).   Therefore the lowest birth weights may be

the most influential observations, yet may be least affected by prenatal care (and other factors).  

By estimating the birth weight equation as a finite mixture model, we allow the observed

factors to have different effects for each type of pregnancy and the unobserved factors to follow

a different distribution.   In this research, we focus on the effects of prenatal care on birth weight

because that has been the factor of greatest interest.  However, this empirical approach has

implications that extend to other factors such as maternal smoking and drinking or policy

changes, which may be likewise affected.  More generally, we are estimating a model that is

more in the spirit of the findings of the medical literature, regardless of the particular factor of

interest.

Finite mixture models have wide appeal and applicability.  McLachlan and Peel (2000)

and Titterington, Smith and Makow (1985) provide excellent surveys of the statistical literature.

Its growing popularity is reflected in an increase in the number of applications in labor

economics (Heckman, Robb, and Walker, 1990; Gritz, 1993; Geweke and Keane, 1997),

marketing (Wedel et al., 1993), development economics (Morduch and Stern, 1997), industrial

organization (Wang, Cockburn, and Puterman, 1998), and other health economics contexts (Deb

and Trivedi, 1997).

The empirical analysis uses data from the National Maternal and Infant Health Survey

(NMIHS) for white and black women who experienced a live birth.  The NMIHS is a widely

used data set that contains information about the prenatal care received, including when it began,

and the birth weight and gestation of the infant.  Information on insurance coverage, health

history, and many other demographic variables are also used.  We impose standard identifying

assumptions, such as including insurance coverage and income only in the prenatal care

equation, to treat prenatal care as endogenous.  More generally, we adhere to the methodology of

past studies wherever possible, including using the typical instruments, so that we may isolate

the impact of allowing for a finite mixture distribution.  These instruments are not without their

weaknesses, but this approach allows us to see if they are really to blame for prenatal care’s
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    1As we discuss in greater detail in Section 4, the NMIHS oversamples poor birth outcomes and 
blacks and so the sample weights provided by the NMIHS are frequently used in empirical analyses.   
We estimate our models both with and without the weights to verify that the oversampling is not driving
our results.  Bimodality is also apparent in the distribution of birth weights, regardless of whether the
weights are used.  We have presented the distribution of residuals because it eliminates modes due to
observable characteristics.

weak effect on birth outcomes.  In addition, we tackle the instruments issue, as well as abstract

from other data issues altogether, by performing a Monte Carlo experiment using data generated

under the assumption of a finite mixture distribution with exogenous prenatal care, which we

then estimate using OLS.  This exercise provides additional evidence about how ignoring the

finite mixture distribution may affect the estimated effects of prenatal care in a situation that

does not require finding appropriate instruments for prenatal care.

Our measure of prenatal care is the onset of prenatal care both because it is the most

commonly used measure and so that we may avoid the problem that plagues visits -- i.e., that

complicated pregnancies entail more visits.  In this way, we can focus on the second issue -- that

certain factors, such as prenatal care, may have different effects on the two types of pregnancies

and that failing to account for this is misspecifying the model.  Is there evidence of

misspecification? Figure 1 presents the unweighted and weighted kernel densities of the 2SLS

residuals from a birth weight regression estimated from our main samples, which can also be

thought of as birth weights adjusted for demographic variables and  prenatal care.1  In light of the

two modes, and the fact that multimodal distributions are the “textbook” representation of a

finite mixture distribution, these figures present compelling evidence that the standard method is

misspecifying the model and that a finite mixture is more appropriate.  What impact does this

misspecification have on the standard infant health model?  And, what new insights are gained

by using a finite mixture model?  Answering these questions is the purpose of this paper.

2.  Background

Previous economic research builds upon the infant health production model of Rosenzweig and

Schultz (1982, 1983), which results in a birth outcome production function and input demand
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    2 Warner (1998) is the first to emphasize maternal anthropometric characteristics such as mother’s birth weight
and height, which he finds quite significant.  We therefore include such variables also.

    3 For example, Grossman and Joyce (1990) use insurance status, the availability of WIC centers and prenatal
care clinics in the area and the percentage in poverty to identify prenatal care.  In the birth weight equation, however,
they add the baby’s gender, whether a private physician attended the birth and tobacco, alcohol and narcotics use,
such that Z is not a subset of X.

PNC X ui i i= +β (1)

BWT PNC Zi i i i= + +γ τ ε (2)

functions, such as prenatal care utilization.  A common specification is to estimate a

simultaneous model that includes a prenatal care equation,

and a birth weight equation,

where X includes characteristics of the mother including age, education and her health

endowment, and factors affecting her ability to obtain prenatal care such as income and

insurance status.2  The variables in Z are frequently, but not always, a subset of X, and the

identifying restrictions tend to include variables that capture availability of prenatal care, such as

insurance status, income and community-level variables.3   As discussed in detail by Warner

(1998), satisfactory restrictions are difficult to find and the structural birth weight equation may

be weakly identified as a result.  Indeed, such weak identification has been blamed in part for the

lack of significant prenatal care effects (e.g., Currie and Grogger, 2000, who use policy changes

in Medicaid and welfare as identifiers).

Further complicating the model are maternal behaviors such as smoking and drinking,

which are strongly associated with poor birth outcomes, yet are likely a matter of maternal

choice.  Including these variables and treating them as endogenous further strains an already

weakly identified birth weight equation.  In addition, one of the objectives of prenatal care is to

change these behaviors and so their inclusion may obscure the effects of prenatal care.  Most

studies therefore either omit these behaviors (e.g., Liu, 1998 and Currie and Grogger, 2000) or

treat them as exogenous, sometimes using information on behaviors before the pregnancy, (e.g.,

Kaestner, 1999; Warner, 1998; and Grossman and Joyce, 1990).  In order to focus on the effects
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of a finite mixture specification (and prenatal care), and to keep the model as uncomplicated as

possible, we choose to omit these behaviors.  However, using a finite mixture model may alter

the estimated effects of these behaviors on birth weight and so is a worthwhile extension of this

research.

All economic studies to date have ignored the consistent findings of the medical literature

that one of the two main causes of low birth weight – preterm birth – is very difficult to prevent. 

The other cause, retarded growth, appears much more preventable, especially for infants at or

near fullterm (greater than 37 weeks gestation).  Shiono and Behrman (1995) in their excellent

review of the problems of low birth weight note that while the medical profession has made huge

strides in rescuing troubled infants, it has had little success in preventing troubled births,

especially those due to preterm birth.  They note that “the causes of most preterm births have not

been identified,” whereas low birth weight due to retarded fetal growth is more easily prevented

by modifying maternal behaviors, which as discussed above is an objective of prenatal care. 

Indeed, Kogan et al. (1994) looks at the content of prenatal care and finds that it is the receipt of

advice on healthy behaviors that appears to have the strongest effect.  Shiono and Behrman

(1995) go on to state “...even the best prenatal care alone cannot be expected to solve the dual

problems of low birth weight and preterm birth.”  This appears to be borne out by several studies

that have looked at attempts to increase access to prenatal care (e.g., Medicaid) and expand its

content and have found no impact on preterm birth (Collaborative Group on Preterm Birth

Prevention, 1993; Binstock and Wolde-Tsadik, 1995; and Ray, Mitchell and Piper, 1997). 

Treating all pregnancies as the same, as the health economics literature has done, may

therefore obscure the positive effects that prenatal care is having on a subgroup of pregnancies. 

Indeed, the medical literature strongly suggests that a finite mixture specification is more

appropriate.   Alexander and Korenbrot (1995) argue that researchers need to separate out the

population of low birth weight births that are potentially modifiable.  Paneth (1995, p.24) notes

that “Several mathematically oriented investigators... have argued that the roughly normal birth

weight curve in any population is really a mixture of two distributions, one of the normal
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BWT PNC Zi i i i= + +$ γ τ ε (3)

population and the other of a pathological group of babies (referred to as the “residual”

distribution) in whom small size is a reflection of some unhealthy maternal or fetal condition.”  

Our intent here is to bring this wisdom to health economics research on infant health by

estimating a finite mixture distribution model of birth weight.  Our results allow us to see

whether the pregnancy outcomes can be differentiated in such a way and, if so, whether prenatal

care and other factors have differing effects on them.

3.  Empirical Strategy

The basic model we estimate consists of equation (1) to predict onset of prenatal care and a birth

weight equation derived from equation (2),

where  is the predicted value of PNC obtained from equation (1).  In choosing thisPNC$

specification, we attempt to capture the general spirit of previous studies rather than replicate a

specific one, as each study differs slightly in the variables it includes.  Likewise, we use typical

data and instruments for prenatal care so that we may provide evidence of the impact of using a

finite mixture model in a ‘typical’ infant health study – and address the issues of problematic

instruments and specific data with our Monte Carlo experiment.

We choose the onset of prenatal care in weeks as the measure of prenatal care for several

reasons.  Foremost, it is the measure most used by past researchers, either directly (e.g.,

Grossman and Joyce 1990, Liu 1998, Warner 1995, 1998) or as part of a discrete measure or

index of care (e.g., Joyce 1994 and Currie and Grogger 2000).  Even those that focus on number

of visits tend to condition on when prenatal care began (e.g., Joyce 1999 and Kaestner 1999).

Another advantage of onset of prenatal care is that, unlike visits, it is less likely plagued

with also having a mixed distribution.  ‘Complicated’ pregnancies are more likely to entail a

greater number of visits than ‘normal’ ones.  This suggests that visits should also be modeled
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    4 For instance, a woman who has had difficult pregnancies in the past may be more likely to seek care early
and may have more visits.  This can be controlled for by including her medical history.  Conversely, a woman with
an otherwise normal history whose pregnancy becomes complicated is likely to have more visits, but is no more
likely to have sought care early.  Yet, the impact of having sought care early may differ by type of pregnancy.

with a finite mixture of distributions, which would greatly complicate our model.  The onset of

prenatal care is less likely to be affected by the type of pregnancy and its endogeneity can be

more adequately remedied by including the woman’s history of difficult pregnancies.4  However,

we later use number of visits to check the validity of our results by seeing if those women with a

high probability of a complicated pregnancy did indeed have more visits.    Finally, getting

women early prenatal care has been a focal point in the push to improve infant health.

In the prenatal care equation, we include all of the variables in the system as is standard

in a first stage regression within a simultaneous system.  We therefore include the mother’s

anthropometric characteristics (her height and birth weight), her medical history (parity, number

of prior fetal deaths), and her other characteristics (age, education, number of own children

living with her, urban).  The gender of the infant enters both equations for consistency, although

it probably is not known at the time prenatal care is sought.   

Ideal instruments for prenatal care are variables that capture the availability of prenatal

care but that are not otherwise correlated with the errors, i.e., the instruments should be

“relevant” and “exogenous”.  However, as discussed above and noted by Warner (1998) and

others, finding such instruments for prenatal care is quite difficult.  In order to focus on the

merits of the finite mixture approach, we employ the typical identifying restrictions. 

Specifically, we use two state-level characteristics, a health care price index and population

density, and several individual characteristics associated with the ‘cost’ of prenatal care and the

mother’s ability to pay for it – whether the mother cohabits with the father, her income and

insurance status.  These restrictions are not beyond criticism; for instance, one could argue that

family income could directly affect birth weight.  To address such criticism, we  perform and

report the results of two tests on the identifiers in the standard 2SLS model.  First, we test their

joint statistical significance in the prenatal care equation; this is the test for instrument relevance. 
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    5In principle, one could specify prenatal care, PNC, and BWT as a bivariate density (with
BWT following a mixture density) and jointly estimate the parameters of both equations.  Both
for simplicity and to remain in the spirit of current research, we instead use a two-step approach
that estimates prenatal care separately in a first stage.
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Second, we perform a Hansen test on the over-identifying restrictions; this is the test for

instrument exogeneity.  Developing an over-identification test for our finite mixture model is

beyond the scope of this paper, and so we must rely on the 2SLS results for reassurance. 

However, as a final inquiry into the impact that our instruments may have on the finite mixture

results, we perform a Monte Carlo exercise that allows us to abstract from the endogeneity issue

altogether.

A.  A Finite Mixture of Distributions Birth weight Function

In the finite mixture model, the random variable of interest is assumed to be a draw from a

population that is an additive mixture of distinct subpopulations or classes (c) in proportions pc

where .  For birth weight, BWT, the mixture density can bep p c Ccc

C
c= > ∀ =

=∑ 1 0 1 2
1

, , , ...,

described in general by

where the class densities gc(BWT|1c) are assumed to be normals, i.e.,

The mixing probabilities, pc, regression coefficients, (c and Jc, and the standard deviation

parameters, Fc, vary across classes.5

The log likelihood function for the data is given by



10

l BWT w g BWTi i
i

N

i( | ) log( ( | )Θ Θ=
=
∑

1

(7)

The model is estimated by maximum likelihood using a quasi-Newton constrained maximization

algorithm, the code for which is implemented in SAS/IML.  Note that the mixing probabilities

are jointly estimated with the class-specific regression coefficients and standard deviations.

B.  Sampling weights

As we discuss in greater detail in the data section, the NMIHS is a complex, stratified random

sample and includes oversampling of poor birth outcomes. In such designs, the use of sample

weights can, in principle, substantially alter inference via estimates of standard errors of

parameters and can change point estimates.  In practice, point estimates tend not to change much

although standard errors of estimates do change noticeably.  To guard against the possibility that

our inference is unduly affected by sampling weights, we estimate our models with and without

them.  In the weighted models, the 2SLS estimates are calculated using standard weighted least

squares.  For the finite mixture model, we maximize a weighted log likelihood function,

where wi denotes the weight associated with observation i.  The sample weights are inversely

proportional to the probability that the observation would be observed in the population, i.e.,

they are probability weights.

C.  Inference

Asymptotic standard errors obtained using the ordinary least squares formula for the second

stage in the 2SLS case, and formulae based on maximum likelihood or quasi maximum

likelihood theory are incorrect because they do not account for the fact that a generated

regressor, predicted prenatal care, is being used as a covariate in the birth weight regressions.  In

the case of 2SLS, a formula exists to adjusts the standard least squares estimates.  In the case of

finite mixture models, an analogous formula does not exist.  Therefore, we use bootstrap

methods to calculate standard errors for the parameter estimates in the finite mixture
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specification.  For comparability, we also use bootstrap standard error estimates in the 2SLS

specification. 

Bootstrap estimates of standard errors are constructed in the following way.  A random

sample with replacement is drawn from the original sample, with the same sample size.  The first

stage regression is estimated using the random sample and predicted prenatal care is calculated. 

Least squares and maximum likelihood are used to calculate birth weight equations using

predicted prenatal care as a regressor and the parameter estimates are stored.  This process of

drawing bootstrap samples and estimation is repeated 1000 times.  The sample standard

deviations of the 1000 sets of parameter estimates are the bootstrap standard errors of the point

estimates of the parameters.

D.  Robustness

In order to confirm that our results are generalizable, we check for robustness in our empirical

analysis along three dimensions.  First, as mentioned above, we estimate every variation of the

2SLS and finite mixture models both with and without using the sample weights provided with

the NMIHS. Second, we guard against the possibility that our results might be due to a small

number of outliers via the use of nonparametric bootstrapped standard errors for inference. 

Third, we estimate our models using our preferred sample that includes valid information for the

birth weight of the mother and a larger sample which excludes this variable.  In addition, as

explained further below, in every variation of the model we stratify the sample by race.  Finally,

we confirm the plausibility of our findings by conducting a Monte Carlo experiment, described

in Section 7, in which we can abstract from data and instrument specification issues altogether.

4.  Data Description

Our primary data comes from the National Maternal and Infant Health Survey, 1988 (NMIHS),

which is publicly accessible data published by the National Center for Health Statistics (NCHS). 

NMIHS contains information on women who were pregnant in 1988 and, following Kaestner

(1999) and Warner (1998), we use only the data from the live birth sample.  While Grossman
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    6One might argue that this oversampling could be responsible for the ‘bump’ evident in the birth weight
(residual) distributions presented in Figure 1.  However, the fact that this ‘bump’ remains even after the sample
weights are incorporated into the estimation procedure and the construction of the kernal density strongly suggests
that this bimodality is not an artifact of the sampling process.  Furthermore, as we discuss in the results section, the
strong statistical evidence of a mixture of distributions remains even after taking the sample weights into account.

    7 Although this could be another potential source of self-selection, the small number of observations made
controlling for it infeasible.

and Joyce (1990) point out that this selection causes bias, using the standard Heckman correction

is particularly problematic for us because it assumes an underlying normal distribution.  We

therefore follow Kaestner (1999) and Warner (1998) in omitting this correction.  We also take

comfort in the fact that Gray (2001), who uses the NMIHS and explores the impact of self-

selection, finds that it has little impact.  Finally, one could argue that by limiting our focus to live

births we are, if anything, underestimating the importance of the ‘complicated’ class of the finite

mixture inasmuch as fetal and infant deaths are likely disproportionately represented there.

Another issue is that the NMIHS is not a simple random sample.  The stated purpose of

the NMIHS is to study poor pregnancy outcomes and therefore such outcomes are oversampled. 

Within the live birth sample, it oversamples low and very low birth weight babies; black infants

are oversampled as well.  Because of this oversampling and because previous research finds

important racial differences in birth weight (e.g., Warner 1995, 1998, Liu 1998 and Conway and

Kennedy forthcoming), we stratify our sample into blacks and whites, and conduct our analysis

using weighted and unweighted procedures.6

As most studies do, we eliminate multiple births because such babies tend to be born at

shorter gestation and lower birth weights, and to also eliminate multiple birth observations that

share one prenatal care observation.  To construct the final samples, we begin with the 9146 live,

singleton births.  We then eliminate, in the following order, the small number of women who had

no prenatal care (N=284)7, those missing information for number of prenatal care visits (N=10),

and those missing information for parity (N=79).  We follow the typical practice of omitting

teenagers (< 19 years old) and much older mothers (> 50 years), which eliminates 1168

observations.  Following Warner (1998), gestations less than 20 weeks or greater than 45 weeks
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    8Results from the full sample are available upon request.  In addition,  the distributions of the 2SLS
residuals – i.e., those reported in Figure 1 – are also very similar for this sample and are likewise available
upon request.

(N=48) and birth weights below 400 grams or above 6000 grams (N=35) were deleted.  We also

eliminate the 30 observations from Hawaii.  After all of these exclusions, there are (9146-284-

10-79-1168-48-35-30 =) 7492 observations, of which 3350 are nonHispanic blacks and 3245 are

nonHispanic whites.   

Maternal birth weight has been found to be an important predictor of the infant's birth

weight (Warner 1998).  However, a large number of observations have missing data for this

variable.  For this reason, we estimate the model with two samples for each race.  A bigger

sample (N=3350 and N=3245) is used when maternal birth weight is left out of the model, and a

smaller sample (N=2312 and N=2905) is used when it is included.  The results are very similar

between the two samples and maternal birth weight is always statistically significant.  For this

reason, we report descriptive statistics and results for only this smaller sample.8  As an additional

check, we also re-estimate the 2SLS model for the smaller sample but excluding maternal birth

weight as a variable and the estimates are again very similar.  Thus, neither the sample nor the

inclusion of maternal birth weight appear to have an impact on the results and so we feel

comfortable emphasizing the results from the smaller sample that includes mother’s birth weight. 

Table 1 reports the names, definitions and sources of the variables used in the model. It

also presents the weighted and unweighted sample means of the variables for nonHispanic white

mothers and black mothers.   Immediately evident is the difference between the races and the

expected impact of using the weights.  Black mothers consistently have infants that are on

average 200-300 grams lighter than white infants, even after using the sample weights.  Some of

this may be due to socioeconomic circumstances as black mothers clearly appear more

economically disadvantaged, regardless of whether the weights are used.  Black mothers are

younger, have slightly lower education, have lower family incomes and higher Medicaid

participation.  They are more likely to have never married, and are much less likely to be
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    9  The results from the bigger sample that includes observations with missing values of mother’s birth
weight are available upon request. All standard errors are bootstrapped estimates.  

cohabiting with the father yet are cohabiting with a greater number of children.  They also

receive prenatal care more than a week later than white mothers on average.  In general, then,

weighting the data increases birth weights, as expected, but otherwise has little impact on the

means of the other variables and the racial disparities persist. 

5.  2SLS vs. Finite Mixture Results

Table 2 reports the results from estimating the birth weight equation (measured in

hundreds of grams) by standard 2SLS, both weighted and unweighted, for our main sample of

white mothers and of black mothers.9   Recall that prenatal care  is predicted from another

equation, in which cohabiting with the father, income, insurance status and state-level variables

population density and health care price index, are identifying instruments.  

Reported at the bottom of Table 2 are two tests of the quality of these instruments.   The

first is a test of the joint statistical significance of these identifiers in the prenatal care equation. 

Every model we estimate (including those unreported) strongly rejects that these identifiers are

jointly equal to zero; in addition, most of the identifiers are individually statistically significant

from zero as well.  The second is a test of the over-identifying restrictions in the birth weight

model, whether these variables are jointly uncorrelated with errors in the birth weight equation. 

Our instruments satisfy the usual requirements of a typical infant health production model, in

that they contribute statistically significant explanatory power in the prenatal care equation, but

are not correlated with the error in the birth weight equation.  More generally, our prenatal care

equation estimates suggest the usual pattern of disadvantaged women (e.g., lower income,

Medicaid participants) receiving later prenatal care.  The full results from the prenatal care

equation are available upon request.

The estimates from the 2-class finite mixture models estimated for white mothers and

black mothers are reported in Table 3.  We restrict our attention to the 2-class mixture of normals
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    10 This compares to 12 to 37 grams per month for blacks and 4 to 23 grams for whites found by Grossman and
Joyce (1990), 6 to 197 grams per month by Liu (1998), and -18 to 50 per week by Warner (1998).  Our estimates
therefore fall in the high end of the range and display much less variability. In our larger samples that exclude
mother’s birth weight, the estimated range is 42-60 grams a week.

for several reasons.  First, Figure 1 shows compelling evidence that there are two sub-

populations in birth weights.  In addition, our attempts to estimate three-class mixtures of

normals lead to miniscule improvements in the maximized log likelihoods, improvements too

small to justify their further analysis.  Finally, there are the insights of Paneth (1995) and others

in the medical literature who argue there is only a dichotomy between “normal” and

“complicated” births, a view that is now supported by both our graphical view and our analysis

of maximized log likelihoods.  Our finite mixture model therefore yields two sets of coefficient

estimates -- one for ‘normal’ pregnancies and one for ‘complicated’ pregnancies.  It also yields

an estimated probability, p, of having a ‘normal’ pregnancy.” 

The most striking feature of these results is the robustness of the finite mixture model

across samples, races and weighting schemes, especially compared with the 2SLS results. 

Nowhere is this more evident than for the prenatal care coefficients.  In the 2SLS models, the

prenatal care coefficients are quite large (ranging from 68 to 75 grams improvement for getting

care one week earlier) and statistically significant in the unweighted white results, but are

completely washed out if one uses the sample weights.  For blacks, the opposite pattern occurs --

prenatal care is only statistically significant if one uses the sample weights.  While one might

expect the results to be affected by the weighting scheme due to unobservables, it is not at all

clear why there would be this strong difference by race.

In contrast, the message from the finite mixture models is clear -- getting prenatal care

one week earlier significantly increases birth weights in 'normal' pregnancies by 30-60 grams per

week.  The gains appear slightly larger and more variable for blacks and also for the (unreported)

models that use the bigger sample.  For our reported samples, the estimates have a remarkably

tight range of 30 to 35 grams per week across blacks and whites.10   However, onset of prenatal

care appears to have no significant effect on the birth weights from 'complicated' pregnancies.  
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    11 For instance, in 1998 approximately 10% of nonHispanic white births were preterm (less than 37 weeks
gestation) compared to approximately 17% of nonHispanic black births.  Similarly, 6.6% of white births were low
birth weight compared to 13.2% for blacks.  (National Vital Statistics Report, Vol. 48, No. 3, March 18, 2000.)

There are other lessons from the finite mixture model as well.  The majority of the

characteristics found to affect birth weight in the 2SLS models (and other research) -- age,

education, mother's birth weight and height, and number of children at home -- affect primarily

'normal' pregnancies.  Number of previous infant/fetal deaths, however, only affects the birth

weights of 'complicated' pregnancies.  These results make sense and are consistent with the

medical literature, as discussed earlier, that finds that little can be done to prevent premature

births (e.g., Goldenberg and Rouse 1998), which account for a large proportion of low birth

weight infants.  Mother's age, birth weight and height are also occasionally significant, again

being variables over which the physician has no control.  

Finally, the estimated probability of having a 'normal' pregnancy is again remarkably

robust.  This parameter is estimated with great precision and ranges from 0.856 to 0.873 across

samples, races and weighting schemes.  Given that past research has found blacks to have a

higher incidence of poor outcomes, it is noteworthy and somewhat surprising that the

probabilities of a poor outcome (1-p) are very close although slightly higher for blacks.11  But

this stability across races is consistent with the view that racial differences in birth outcomes are

largely due to economic and behavioral factors.  

The estimated magnitudes also appear to be on target with the medical literature. 

Goldenberg and Rouse (1998) state that preterm birth occurs in 11 percent of all pregnancies.

Given that many, but not all, low birth weight babies are also preterm one would expect the

probability of a 'complicated' pregnancy to be close to but perhaps slightly larger than 11

percent.  In addition, the predicted distribution of a ‘normal’ pregnancy yields a mean birth

weight of about 3350 grams for whites and 3150 grams for blacks.  These means fall

comfortably within the median birth weight range of 3000-3499 grams given by the National
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Vital Statistics Report for 1998.  In contrast, the fitted means for the ‘complicated’ pregnancies

are consistent with the definition of very low birth weight babies (< 1500 grams). 

6.  What Does Our Model Predict with Respect to Birth Outcomes?

We can use our finite mixture parameter estimates to calculate the posterior probability of being

a ‘normal’ pregnancy.  Our model assumes that the prior (unconditional) probability of a

‘normal’ pregnancy is constant across observations (p).  However, we can use Bayes Theorem to

calculate the posterior probability of having a ‘normal’ pregnancy for each woman, conditional

on the actual birth weight of her infant and her explanatory variables:

Pr(' ' | , )
( | )

( | ) ( ) ( | )
normal BWT X

pg BWT
pg BWT p g BWT

=
+ −

θ
θ θ

1

1 21
(8)

With this calculated posterior probability, we can then classify pregnancies as ‘normal’

(Pr(‘normal’) > 0.5) and ‘complicated’ (Pr(‘normal’) < 0.5).  By classifying the pregnancies in

this way, we can examine how they are related to other characteristics and move closer to

Alexander and Korenbrot’s (1995) suggestion that researchers identify the low birth weight

births that can be modified.  We have calculated these posterior probabilities for the unweighted

samples with mother’s birth weights and associated parameter estimates.  It is important to note

that the predicted probabilities themselves are also bimodal such that very few observations have

probabilites near 0.5; therefore, modifying our classification rule affects very few observations.

Our first exercise explores how well our model’s classification is validated by the usual

observed variables – gestational age and birth weight –  used to classify troubled pregnancies. 

Using these observed variables, we classify pregnancies into four groups: 1) full-term, good

outcome (normal birth weight and gestation > 37 weeks), 2) preterm but good outcome (normal

birth weight and gestation < 37 weeks), 3) full-term, retarded growth infant (birth weight < 2500

grams and gestation > 37 weeks), and 4) pre-term, low birth weight (birth weight < 2500 grams
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and gestation < 37 weeks).  For each of these groups, we report in Table 4 several

characteristics, including the proportion of births classified as ‘normal’ by our model.  

For both whites and blacks, it is evident that our predicted probabilites map very well

against these observed variables.  All of the normal birth weight births (the first two categories)

are classified as ‘normal’ by our model, whereas only 30 percent of the preterm, low birth weight

births are so classified.  This adds credibility to our model.  At the same time, these results

suggest that one cannot isolate our predicted ‘normal’ (and therefore presumably ‘modifiable’)

pregnancies by simply eliminating from samples of data all births that are low birth weight and

preterm (category 4); some ‘complicated’ pregnancies will remain and some ‘normal’

pregnancies will be excluded.  For example, the pre-term/low birth weight group – those we

would think to be ‘complicated’ – consist of nearly one-third estimated “normal” births.  This

suggests that almost one-third of preterm/low birth weight births are modifiable and could

therefore be affected by timely prenatal care.  Likewise, between 10 and 20 percent of the full-

term, low birth weight births (apparently ‘retarded growth’) are estimated to be ‘complicated’

pregnancies.

Other interesting differences emerge between these four groups of pregnancies.  The

‘retarded growth’ births (category 3) did receive prenatal care somewhat later than the normal

birth weight births, whereas the preterm/low birth weight births received it earlier.  More

generally, the mothers of preterm/low birth weight babies appear more similar to the mothers of

normal birth weight births, in terms of education and onset of prenatal care, than do the mothers

of the ‘retarded growth’ babies. The preterm/low birth weight births also received a much greater

proportion of the recommended number of prenatal care visits, as expected.

The second exercise classifies pregnancies into three categories using the posterior

probability and birth weight – 1) ‘normal’ pregnancies and normal birth weight, 2) ‘normal’

pregnancies and low birth weight, and 3) ‘complicated’ pregnancies (all of which are low birth

weight).  In this way, we can use our finite mixture estimates to identify the potentially

modifiable, troubled pregnancies (group 2) as suggested by Alexander and Korenbrot (1995). 
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Key characteristics are reported for these three kinds of pregnancies for both whites and blacks

in the right hand panel of Table 4.

 Here again we see that preterm birth does not perfectly map against our estimate of a

‘complicated’ pregnancy – about half of the ‘potentially modifiable,’ low birth weight

pregnancies are preterm.  Likewise, between 5 and 10 percent of the ‘complicated’ pregnancies

are not preterm.  We also see that the ‘potentially modifiable’ group – group 2 – did indeed

receive prenatal care later than the other two groups, whereas the ‘complicated’ births received it

earlier.  The second group is also less educated than the other two.  They also received a higher

proportion of recommended visits than the first group, which is consistent with the usual case of

pregnancies with poor outcomes receiving more visits.  However, the pregnancies we classify as

‘complicated’ (group 3) received a much greater proportion of the recommended visits, a further

validation of our model.

7.  Could a Finite Mixture Really be to Blame?  A Monte Carlo Experiment

Our results thusfar suggest that ‘normal’ pregnancies are significantly affected by the onset of

prenatal care, whereas ‘complicated’ ones are not.  We have also asserted that including both

types of pregnancies, as past studies do, may lead prenatal care to appear ineffective.  However,

our estimates suggest that the probability of a complicated pregnancy is only 10 to 15 percent.  Is

it really possible that such a small proportion of pregnancies are so influential as to make

prenatal care appear ineffective?  Are our findings unique to our specific data, our specific set of

instruments?

To address these questions, we perform a Monte Carlo experiment in which we generate

data under the assumption that our finite mixture specification (and resulting estimates) are

‘correct’.  We then investigate the effects of estimating a typical birth weight production model

(2SLS) with this artificially generated data.   In this way, we can see what results the ‘usual’

estimation method will yield if the data are indeed generated from a finite mixture distribution

similar to the ones we estimated.  
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An additional complication to this experiment is the endogeneity of prenatal care.  To

abstract from its endogeneity and the problems introduced by using potentially poor instruments,

we use predicted prenatal care to both generate the birth weights and to estimate the birth weight

equation.  Note that this eliminates the quality of the instruments as an issue in this exercise.  For

instance, if the instruments are really poor, using actual prenatal care to generate the birth

weights and then predicted prenatal care in estimation should give poor results even when the

data are generated under assumptions favorable to OLS – i.e., not mixture.   By treating

predicted prenatal care as the ‘true’ variable (so that it both generates the data and is used in

estimation), we can focus on the importance of the finite mixture distribution assumption and

make the OLS results the most likely to succeed.  More importantly, it allows us to see whether a

finite mixture distribution, by itself, can cause prenatal care to appear ineffective, even in a case

where prenatal care is exogenous (or ideal instruments exist).

The specifics of our Monte Carlo experiment are most easily explained through a

sequence of steps:

Step 1:   Use the estimated coefficients from the finite mixture model as values for all nuisance

parameters (all coefficients other than the prenatal care parameters and the mixing probability). 

We choose varying values for the prenatal care coefficients and the probability of a normal

pregnancy, including p=1 which is a nonmixture case and the baseline case.

Step 2: Take the actual data for the explanatory variables (e.g., education, age) and the predicted

prenatal care of prenatal care, and then randomly assign (according to probability p) each

observation to one of the distributions.

Step 3: Generate the birth weight for each observation, which has been assigned to distribution j

(=1,2), using 1) the finite mixture estimates and chosen values for the coefficients for that

distribution ((j and Jj), 2) the actual data for the explanatory variables ( and Z), and 3) aPNC$

normally distributed random error (gj) drawn from distribution j with the finite mixture estimated
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variance (Fj
2).  In the case of the weighted sample, we use the coefficients and variance

estimated from the sample-weighted, finite mixture model.

Step 4: With these generated birth weight data, estimate the birth weight equation with OLS. 

This estimation procedure assumes that all observations come from the same distribution.  In the

case of the weighted sample, we estimate the birth weight equation on the data generated with

the weighted coefficients and use weighted OLS.

Step 5: Repeat steps 2-4 2000 times.

Step 6: We report the 5th, 50th and 95th percentile values for the estimated prenatal care

coefficient.  This produces a range of estimated coefficients to compare to those commonly

found in the literature.  We also report the proportion of times that the estimates lead the

hypothesis of no effect of prenatal care (i.e., the prenatal care coefficient is zero) to be rejected at

10% and 5% levels of significance (power of the test).  This shows how likely one is to find a

statistically significant effect of prenatal care.

Table 5 reports the different values of the prenatal care coefficients and mixing

probability chosen, as well as the results of the experiment.  Because the results are quite similar

for both the black and white samples, we report only those for the white sample for brevity;

those for blacks are available upon request.  Focusing first on the baseline case in which there is

not a finite mixture (p=1) validates our experiment.  In these cases, the prenatal care coefficients

are consistently negative and our tests have relatively high power.  For instance, in the

experiment based on the sample of white mothers when the prenatal care coefficient is set to -

0.4, the range of estimates is between -0.17 and -0.64 and one has a 90% probability of rejecting

the null hypothesis of no effect using a 10% significance level.  And, as expected, the power of

the test falls as either the magnitude of the prenatal care coefficient decreases to -0.3 or the

significance level decreases to 5%.  This baseline case with its generally high power also

validates the explanatory power of our instrument set for prenatal care.  If, instead, the identifiers

had poor explanatory power in the prenatal care equation, then predicted prenatal care would be

highly collinear with the included regressors and lead to low power.
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Of primary interest is what happens to the estimated prenatal care coefficient and its

statistical significance as we allow a finite mixture distribution.  As the probability of a ‘normal’

pregnancy (p) decreases towards 0.85, the range of prenatal care coefficients widens to include

positive values, and the power of the test decreases to where we are more likely to fail to reject

the hypothesis of no effect of prenatal care than to reject it .  For instance, consider the case in

which prenatal care has the strongest effects (-0.4 for normal pregnancies and -0.1 for

complicated ones) and look at the effects of going from a nonmixture case (p=1)  to a finite

mixture with probability of a normal birth of 0.85.  On the one hand, the median values of the

point estimates are what we would expect – roughly a weighted average of the two regimes’

coefficients, which with a small ‘complicated’ regime does not lead to a dramatic reduction.  On

the other hand, the range of estimates dramatically widens and the probability of obtaining a

statistically significant coefficient plummets.  The power of the test is reduced from 0.90 to

approximately 0.40 if the 10% level of significance is used.   In the case of more modest prenatal

care effects (-0.3 for normal and zero for complicated) and a 5% level of significance, the

probability of finding a statistically significant effect of prenatal care is 21% or less.  

This experiment suggests that ignoring the presence of a finite mixture distribution in the

estimation procedure can make prenatal care appear statistically unimportant the majority of the

time – even if only 10-15% of the pregnancies follow a different (‘complicated’) distribution. 

Furthermore, by allowing us to sidestep some of the model specification choices made in the

empirical analysis (e.g., endogeneity and identifying restrictions, data selection, two-step

estimation) and finding similar results, it reinforces the conclusions drawn from it.  And, thus,

even though our empirical analysis suggests that only a small proportion of pregnancies are

‘complicated’ and enjoy little benefit from prenatal care, our Monte Carlo experiment reveals

that ignoring their presence may indeed be responsible for the commonly found weak effect of

prenatal care.
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    12 We stress that this is only an exercise to see if our argument has relevance for the Medicaid expansion
literature.  The many complications of more thoroughly examining this issue, such as the possible endogeneity of
Medicaid generosity and  looking at changes over time, are beyond the scope of this paper.

8.  What About Reduced Form Models?

Many researchers have rejected structural models of infant health in favor of reduced form

models in order to explore the impact of the Medicaid expansions or other policy variables, such

as welfare reform and cigarette taxes, on birth outcomes.  Perhaps due to the difficulties of

identifying the structural birth weight equation and therefore the indirect (through prenatal care)

effects of policy changes, many estimate only a reduced form birth weight equation, in which the

policy variables enter the birth weight equation directly and prenatal care does not.  The total

effect of a policy on birth weight can then be measured by the coefficients on the policy

variables.  For example, Currie and Grogger (2000) estimate both structural and reduced form

birth weight equations, as well as prenatal care utilitization equations, for black and white

women.  They find that increasing Medicaid eligibility increases prenatal care utilization for

both whites and blacks.  These increases translate into modest improvements in the incidence of

very low birth weight for whites, but has no real effect for blacks.

More generally, the estimated effects of the Medicaid expansions on birth outcomes are 

considered modest at best (e.g., Gruber 1997 and Kaestner 1999).  If, however, the effects of

prenatal care are obscured by a failure to acknowledge the two types of pregnancies, then

Medicaid and other policies may appear to be ineffective as well.  We therefore present, as an

illustration only, results from a reduced form birth weight equation that includes Medicaid

eligibility.12   This exercise also reveals how a finite mixture model has implications that extend

beyond prenatal care to other factors thought to affect birth weight;  we choose Medicaid

eligibility rules because they are more likely exogenous to the mother than maternal behaviors,

which are almost certainly endogenous and thus plagued with the same issues as prenatal care.

Specifically, we estimate a reduced form birth weight equation that is designed to capture

the effects of Medicaid policy.  This is in the spirit of Currie and Gruber (1996) and Currie and

Grogger (2000).  Briefly, both prenatal care and insurance status are considered endogenous and
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    13One exception to this relative stability is the coefficient on whether the father cohabits with the mother in the
white samples.  It is negative (and against our expectations) for ‘complicated’ pregnancies and very significant.  A
closer look reveals that it is likely due to a combination of a small number of troubled pregnancies in this smaller
sample and the high collinearity between it and the never married (Unmarry) variable, a variable whose coefficient is
also quite large and significant.  We can also take comfort in the fact that the asymptotic standard errors are about
six times bigger for both of these variables’ coefficients, which renders them statistically insignificant.  No other
coefficient’s standard error is affected nearly as much as these two by bootstrapping.

are substituted out of the birth weight equation, leaving birth weight to be a function of all of the

(other) variables in the prenatal care equation plus Medicaid eligibility.   The coefficient on

Medicaid eligibility therefore gives the net effect of expanding eligibility on birth outcomes.  If

expanding eligibility increases Medicaid participation (take-up rates are typically far less than

100%), if Medicaid participation improves access to prenatal care ("crowding out" of private

insurance may act to negate this, e.g. Cutler and Gruber 1996), and if improved prenatal care

improves birth outcomes, then the coefficient should be positive.  All three conditions are

required to find an effect of Medicaid on birth outcomes.  Therefore, if the effects of prenatal

care are obscured by a failure to recognize the finite mixture of distributions of birth weights,

then these researchers may be incorrectly concluding that Medicaid has no effect on birth

outcomes.

Table 6 reports the results of estimating a reduced form birth weight equation with 2SLS

and a finite mixture.  Our Medicaid eligibility measure is the income level below which the

household's income would have to fall in order to be eligible for Medicaid.  It therefore varies

across state and across household size.  We consider these results illustrative only as we are

using only cross-sectional data, which may be confounded by unobserved state influences.  (For

example, a state with a high rate of uninsured people may enact generous eligibility guidelines.)  

Once again, the probability of a 'normal' birth, the predicted distributions of birth weights and the

pattern of variables affecting 'normal' versus 'complicated' pregnancies are very similar to the

previous models.13

What about the effects of Medicaid eligibility?  In general, we find that Medicaid

eligibility improves the birth outcomes for whites and that this effect is strengthened by using the

finite mixture model.  In addition, the finite mixture model suggests that greater access to
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Medicaid only has a significant effect on the outcomes of 'normal' pregnancies, just as prenatal

care did in the structural model.   In contrast, Medicaid eligibility is never statistically significant

for blacks and is in fact negative.  These results are similar to the reduced form results produced

by Currie and Grogger (2000), in which eligibility cut-offs are found to have modest effects for

whites and no effects for blacks.  Our results suggest that the positive effects of expanded

eligibility are further limited to white, 'normal' pregnancies. 

9.  Concluding Remarks

The basic premise of our research is that the standard approach to modeling birth outcomes —

treating all births as coming from the same distribution — misspecifies the true model and

ignores potentially important information.  We argue that there are two types of pregnancies,

‘complicated’ and ‘normal’ ones, such that a finite mixture model is more appropriate.  Our data

from the NMIHS provides compelling evidence supporting our view.  The standard approach

yields residuals that are obviously bimodal.  Estimating birth weights with a finite mixture model

yields estimates that are much more robust across weighting schemes and races and that clearly

show that most factors, including prenatal care, primarily affect ‘normal’ pregnancies.  This is

consistent with the medical literature that finds preterm birth, a main cause of low birth weight,

to be very difficult to prevent, and with researchers such as Paneth (1995) that suggest that birth

outcomes may follow two different distributions.  The standard approach which combines these

two types of pregnanies may therefore cause prenatal care to appear ineffective because the

‘complicated’ pregnancies are likely to be influential outliers that are relatively unaffected by

such factors.  

Indeed, that is what we find — that with a finite mixture model, prenatal care has a

consistent, substantial effect (30-35 grams for each week sought earlier) on normal pregnancies. 

Note that our results are robust to choice of samples and outliers.  As an ultimate robustness

check, we conduct a Monte Carlo experiment in which we generate data under the assumption of

a finite mixture distribution and exogenous prenatal care (such that valid instruments are no
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longer a concern), which we then estimate in the usual (i.e., OLS) way.  Our Monte Carlo

experiment confirms that ignoring even a small proportion of ‘complicated’ pregnancies (10-

15%) can lead the onset of prenatal care to appear  unimportant in the standard model.

Our main finding about prenatal care in a finite mixture model therefore contains both

good news and bad news; the good news is that the onset of prenatal care does seem to improve

birth weights, but the bad news is that it does not help the most troubled pregnancies.  However,

our analysis in section 6 suggests that nearly half of low birth weight births are the result of

‘normal’ pregnancies and therefore can be affected by timely prenatal care.  Furthermore, the

compelling evidence of a finite mixture distribution for birth outcomes has implications beyond

the effects of the onset of prenatal care.  As Kogan et al (1994), Witwer ( 1990) and others have

stressed, the content of prenatal care is just as important, if not more, than its onset.  Likewise,

maternal lifestyle and mental state are other factors that may improve birth outcomes (e.g.,

Chomitz, Cheung and Lieberman 1995 and Conway and Kennedy forthcoming).  Our framework

may prove useful in identifying which of these factors can improve the outcomes of

‘complicated’ pregnancies.  It also has implications for the common use of reduced form models

in estimating the effects of a specific policy such as the Medicaid expansions or cigarette taxes,

as we illustrate using our data and Medicaid eligibility.  Another extension of this research could

be to consider other birth outcomes, such as fetal/infant death, APGAR scores  or excessive

hospitalization, although the discrete nature of these alternative outcomes poses econometric

challenges to the finite mixture model which are well beyond the scope of this paper.  More

generally, our results suggest that research investigating birth outcomes, including the growing

research on the effects of the Medicaid expansions, should acknowledge these two types of

pregnancies in its empirical approach.
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Table 1: Variable Definitions and Sample Means

White Mothers Black Mothers
Variable Definition unweighted weighted unweighted weighted
Birth weight Birth weight of child in 100 grams 30.715 34.449 28.589 31.699
Prenatal care Number of weeks into pregnancy that

prenatal care began
8.375 8.432 9.844 9.887

Mother’s age Woman's age at delivery 27.482 27.358 25.640 25.548
Mother’s
education

Mother's years of education 13.316 13.365 12.640 12.658

Mother’s birth
weight

Mother's own birth weight in 100
grams

31.782 32.119 30.321 30.587

Mother’s
height

Mother's own height in inches 64.847 64.932 64.676 64.738

Child is male Whether infant is male 0.518 0.527 0.512 0.513
Parity Whether woman experienced a

previous pregnancy
0.671 0.671 0.716 0.715

No. of fetal
deaths

Number of prior fetal deaths (abortions
and miscarriages) 

0.369 0.333 0.461 0.427

No. of kids
cohabitating

Number of a woman's own children
living in the household

0.844 0.871 1.121 1.129

Mother is
unmarried

Whether woman was never married at
the time of delivery

0.073 0.070 0.478 0.487

Urban Whether woman lived in an urban
county

0.753 0.746 0.792 0.789

Medical care
pricea

State level weighted average of 4
prices: hospital room, general medical
& dental visits, bottle of aspirin

101.932 101.963 99.546 99.317

Population
densityb

State level population density per
square mile

0.221 0.215 0.332 0.323

Father
cohabits

Whether woman lived with the child's
father

0.910 0.916 0.526 0.522

Family
income

Annual family income in 1000 dollars 32.693 33.158 18.061 18.095

Private
insurance

Whether the woman had private
insurance

0.712 0.720 0.367 0.366

Medicaid Whether the woman had Medicaid 0.110 0.106 0.435 0.437
Medicaid
eligibilityc

Medicaid dollar income eligibility
threshold in 1988 (in thousands)

8.233 8.310 9.062 9.077

Prenatal visits Number of visits divided by number
recommended by the American
College of Obstetrics and Gynecology
and adjusted for gestation

1.122 1.002 1.069 0.967

Notes:
a. The medical care price is based on the Inter-City Cost of Living Index produced by the American
Chamber of Commerce Researchers Association, and includes 1) average cost per day for semi-private
room in hospital, 2) average charge for a GP office visit, 3) charge for teeth cleaning and inspection, no x-
ray or flouride treatment for a dentist visit, and 4) 100-tablet bottle of Bayer brand aspirin.  Data are from
the 3rd or 4th quarter of 1988 for 256 cities, which we aggregate up to the state level.

b. Population density is from the U.S. Statistical Abstract. 

c. Medicaid eligibility levels are from Table 1 of the National Governors' Association, MCH Update,
State Coverage of Pregnant Women and Children - January 1990.  They refer to to a period of time
extending from April 1987-January 1989.
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Table 2: 2SLS Estimates

White Mothers Black Mothers
Coefficient unweighted weighted unweighted weighted
Prenatal care       -0.678*

(0.242)
-0.132
(0.118)

-0.315
(0.306)

-0.328+

(0.189)
Mother’s age         -0.167*

(0.046)
-0.040
(0.024)

-0.053
(0.051)

-0.028
(0.034)

Mother’s education      0.392*

(0.096)
0.273*

(0.049)
0.326*

(0.130)
0.151+

(0.080)
Mother’s birth weight  0.251*

(0.033)
(0.172*

(0.019)
0.167*

(0.032)
0.130*

(0.021)
Mother’s height   0.326*

(0.065)
0.283*

(0.037)
0.242*

(0.065)
0.228*

(0.038)
Child is male      1.516*

(0.351)
1.288*

(0.189)
0.747+

(0.393)
0.962*

(0.248)
Parity      0.617

(0.459)
0.440+

(0.247)
0.064

(0.473)
-0.113
(0.318)

No. of fetal deaths    -1.245*

(0.290)
-0.046
(0.145)

-1.137*

(0.305)
-0.269
(0.172)

No. of kids
cohabitating

1.758*

(0.284)
0.681*

(0.145)
0.504*

(0.184)
0.285*

(0.130)
Mother is unmarried    1.116

(0.940)
0.126

(0.494)
-0.294
(0.506)

-0.436
(0.302)

Urban -0.143
(0.445)

-0.019
(0.235)

0.093
(0.514)

-0.000
(0.350)

Instrument validity
F-stat 11.05

[0.000]
8.40

[0.000]
5.88

[0.000]
5.41

[0.000]
Hansen 5.865

[0.271]
6.378

[0.320]
6.186

[0.271]
3.572

[0.289]
Notes:
Standard errors of coefficient estimates are in parentheses
 * indicates that the coefficient is statistically significant at the 5 percent level.
+ indicates that the coefficient is statistically significant at the 10 percent level.
F-stat is the test for the joint significance of the instruments in the first-stage regression.
Hansen is Hansen’s J overidentification test for all instruments.
p-values of the tests of validity of instruments are in square brackets.
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Table 3: 2-class Finite Mixture Estimates

White Mothers Black Mothers
unweighted weighted unweighted weighted

Coefficient ‘normal’ ‘complicated’ ‘normal’ ‘complicated’ ‘normal’ ‘complicated’ ‘normal’ ‘complicated’
Prenatal
care      

 -0.335*

(0.140)
0.316

(0.227)
-0.308*

(0.133)
0.377+

(0.221)
-0.302*

(0.147)
-0.170
(0.221)

-0.352*

(0.153)
-0.210
(0.229)

Mother’s
age         

-0.103*

(0.029)
-0.123*

(0.056)
-0.110*

(0.030)
-0.114*

(0.056)
-0.018
(0.031)

-0.003
(0.064)

-0.026
(0.033)

-0.009
(0.065)

Mother’s
education      

0.370*

(0.061)
0.237

(0.161)
0.386*

(0.061)
0.234

(0.158)
0.183*

(0.072)
-0.108
(0.135)

0.170*

(0.076)
-0.119
(0.138)

Mother’s
birth weight

0.223*

(0.024)
0.074+

(0.045)
0.222*

(0.023)
0.076+

(0.045)
0.134*

(0.021)
0.114*

(0.033)
0.137*

(0.022)
0.116*

(0.032)
Mother’s
height   

0.334*

(0.030)
0.161*

(0.063)
0.338*

(0.029)
0.151*

(0.062)
0.244*

(0.033)
-0.034
(0.055)

0.250*

(0.035)
-0.026
(0.058)

Child is
male      

1.493*

(0.233)
0.440

(0.583)
1.510*

(0.235)
0.367

(0.588)
1.166*

(0.270)
0.235

(0.477)
1.162*

(0.276)
0.232

(0.479)
Parity      0.872*

(0.338)
0.555

(0.612)
0.870*

(0.340)
0.575

(0.614)
0.021

(0.369)
-0.112
(0.492)

-0.049
(0.374)

-0.151
(0.495)

No. of fetal
deaths    

-0.183
(0.196)

-0.752*

(0.343)
-0.143
(0.191)

-0.777*

(0.347)
-0.179
(0.176)

-0.517*

(0.202)
-0.150
(0.178)

-0.503*

(0.200)
No. of kids
cohabitating

0.953*

(0.180)
0.555

(0.476)
0.971*

(0.184)
0.483

(0.484)
0.266+

(0.149)
0.112

(0.236)
0.280+

(0.151)
0.124

(0.238)
Mother is
unmarried     

0.510
(0.617)

-1.036+

(0.566)
0.453

(0.599)
-1.249+

(0.653)
-0.505
(0.342)

0.146
(0.523)

-0.527
(0.333)

0.137
(0.518)

Urban 0.022
(0.296)

0.798
(0.582)

0.037
(0.298)

0.848
(0.571)

0.165
(0.358)

0.201
(0.487)

0.059
(0.379)

0.140
(0.490)

F 5.502*

(0.186)
4.103*

(0.590)
5.504*

(0.192)
4.087*

(0.620)
5.360*

(0.111)
3.542*

(0.160)
5.361*

(0.111)
3.533*

(0.160)
p(normal) 0.866*

(0.013)
0.867*

(0.016)
0.856*

(0.008)
0.856*

(0.008)
Fitted means 33.584

(0.195)
11.995
(0.892)

33.582
(0.401)

11.973
(1.026)

31.584
(0.138)

10.794
(0.272)

31.582
(0.355)

10.788
(0.304)

Notes:
* indicates that the coefficient is statistically significant at the 5 percent level.
+ indicates that the coefficient is statistically significant at the 10 percent level.
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Table 4: Sample Characteristics by Gestation and Birth weight

White Mothers
Full-
term,

normal
birth

weight

Pre-term,
normal

birth
weight

Full-term,
Low birth

weight

Pre-term,
Low birth

weight

Normal
birth

weight /
‘normal’

Low birth
weight /
‘normal’

Low birth
weight /
‘compli-

cated’

Variable Mean Mean Mean Mean Mean Mean Mean 
Classified ‘normal’ 1.00 1.00 0.81 0.32
Preterm 0.03 0.54 0.91
Prenatal care onset   8.37 8.82 9.70 7.90 8.38 8.70 8.08
Prenatal visits  0.98 1.26 1.00 1.74 0.99 1.25 1.80
Education     13.43 12.89 12.54 13.17 13.41 12.76 13.21
# of observations 2145 66 178 518 2211 313 383

Black Mothers
Classified ‘normal’ 1.00 1.00 0.90 0.30
Preterm 0.05 0.47 0.95
Prenatal care onset    9.83 9.70 10.57 9.66 9.82 10.41 9.47
Prenatal visits 0.91 1.36 0.90 1.62 0.94 1.08 1.73
Education 12.74 12.59 12.30 12.44 12.73 12.34 12.45
# of observations 1601 90 168 453 1691 287 334



34

Table 5: Monte Carlo Evaluation of Linear Regression Estimates

Sample weights not used Sample weights used
percentiles of OLS

estimated coefficient power of test percentiles of OLS
estimated coefficient power of test

(1 (2 p 5th 50th 95th 10% 5% 5th 50th 95th 10% 5%
-0.40 0.00 1.00 -0.62 -0.40 -0.19 0.90 0.83 -0.64 -0.40 -0.17 0.91 0.85
-0.40 0.00 0.90 -0.73 -0.36 -0.01 0.50 0.37 -0.76 -0.36 0.02 0.54 0.43
-0.40 0.00 0.85 -0.74 -0.33 0.05 0.37 0.26 -0.78 -0.34 0.09 0.43 0.32

-0.40 -0.10 1.00 -0.62 -0.40 -0.17 0.90 0.82 -0.64 -0.40 -0.16 0.90 0.85
-0.40 -0.10 0.90 -0.74 -0.37 -0.01 0.49 0.37 -0.79 -0.36 0.02 0.53 0.42
-0.40 -0.10 0.85 -0.77 -0.34 0.06 0.39 0.27 -0.81 -0.35 0.07 0.43 0.33

-0.30 0.00 1.00 -0.53 -0.30 -0.07 0.71 0.60 -0.54 -0.30 -0.05 0.74 0.65
-0.30 0.00 0.90 -0.64 -0.28 0.09 0.33 0.22 -0.67 -0.27 0.13 0.37 0.28
-0.30 0.00 0.85 -0.67 -0.25 0.15 0.25 0.16 -0.72 -0.25 0.20 0.29 0.21

-0.30 -0.10 1.00 -0.52 -0.29 -0.08 0.69 0.57 -0.55 -0.29 -0.06 0.72 0.63
-0.30 -0.10 0.90 -0.66 -0.28 0.11 0.33 0.23 -0.70 -0.28 0.14 0.39 0.29
-0.30 -0.10 0.85 -0.71 -0.27 0.16 0.27 0.18 -0.76 -0.27 0.19 0.32 0.23

Note: 
Based on 2000 replications of artificially generated data and a birth weight equation estimated with OLS. 
The nuisance parameters and covariates are based on the observed sample of White mothers.
The data generating process is a two-class finite mixture of normal densities.  (1 and (2 denote the
parameters on prenatal care in each class and p is the probability of being in class 1.
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Table 6: Medicaid (Reduced form) Estimates

OLS OLS Finite Mixture Finite Mixture
White Mothers Black Mothers White Mothers Black Mothers

Coefficient ‘normal’ ‘complicated’ ‘normal’ ‘complicated’
Mother’s age      -0.029

(0.024)
-0.004
(0.026)

-0.093*

(0.031)
-0.140*

(0.053)
0.003

(0.030)
0.009

(0.062)
Mother’s
education      

0.284*

(0.050)
0.183*

(0.065)
0.390*

(0.061)
0.194

(0.159)
0.207*

(0.069)
-0.096
(0.140)

Mother’s birth
weight

0.175*

(0.018)
0.123*

(0.020)
0.226*

(0.023)
0.065

(0.046)
0.129*

(0.021)
0.112*

(0.032)
Mother’s height 0.282*

(0.036)
0.229*

(0.034)
0.332*

(0.022)
0.036

(0.048)
0.250*

(0.023)
-0.021
(0.039)

Child is male     1.268*

(0.189)
1.001*

(0.231)
1.450*

(0.260)
0.374

(0.444)
1.195*

(0.272)
0.190

(0.431)
Parity   0.402

(0.246)
-0.062
(0.295)

0.807*

(0.328)
0.440

(0.426)
0.034

(0.355)
0.163

(0.425)
No. of fetal deaths -0.036

(0.143)
-0.257
(0.168)

-0.107
(0.189)

-0.837*

(0.324)
-0.144
(0.169)

-0.521*

(0.199)
No. of children
cohabiting 

0.397*

(0.149)
0.289*

(0.144)
0.524*

(0.183)
0.635

(0.463)
0.310+

(0.181)
0.057

(0.338)
Unmarried -0.315

(0.443)
-0.427
(0.293)

-0.242
(0.412)

-1.701*

(0.326)
-0.482
(0.305)

-0.085
(0.442)

Urban 0.064
(0.227)

0.207
(0.315)

0.156
(0.305)

0.547
(0.423)

0.203
(0.361)

0.505
(0.406)

Medical care price 
  

0.007
(0.008)

0.002
(0.011)

0.016+

(0.009)
-0.016
(0.022)

0.006
(0.012)

-0.033*

(0.014)
Population density 
 

-0.281
(0.214)

-0.194
(0.133)

-0.203
(0.278)

-0.018
(0.186)

-0.288+

(0.163)
-0.148
(0.321)

Father cohabits 0.040
(0.449)

0.212
(0.284)

0.493
(0.482)

-2.075*

(0.409)
0.334

(0.300)
-0.216
(0.399)

Family income -0.001
(0.005)

0.014+

(0.008)
0.002

(0.007)
0.002

(0.016)
0.012

(0.009)
0.012

(0.016)
Medicaid
eligibility  

0.099*

(0.038)
-0.027
(0.040)

0.136*

(0.044)
0.083

(0.095)
-0.051
(0.042)

-0.008
(0.091)

F 5.475
(0.178)

4.117*

(0.563)
5.361*

(0.112)
3.467*

(0.166)
p(normal) 0.865*

(0.013)
0.857*

(0.008)
Fitted Means 33.600*

(0.398)
12.001*

(0.905)
31.575*

(0.356)
10.806*

(0.313)

Notes:
Estimates from weighted models are reported.
* indicates that the coefficient is statistically significant at the 5 percent level.
+ indicates that the coefficient is statistically significant at the 10 percent level.
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Figure 1: Unweighted and weighted kernel densities of 2SLS residuals from birth weight regressions

Unweighted kernel density of 2SLS residuals for
Nonhispanic whites

Unweighted kernel density of 2SLS residuals for
Nonhispanic blacks

Weighted kernel density of 2SLS residuals for
Nonhispanic whites

Weighted kernel density of 2SLS residuals for
Nonhispanic blacks

Notes: 
The data source is the National Maternal and Infant Health Survey (NMIHS) and the samples are stratified
by race.  Residuals are calculated from a birth weight equation estimated with 2SLS in which prenatal care
is treated as endogenous. 
Residuals are measured in 100's of grams.
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