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Abstract

This paper studies the effect of infectious disease exposure in early childhood on adult la-

bor market outcomes. To do this, I exploit the exogenous variations in public health projects

and new drugs during the Mortality Revolution (1901-1955) in the United States, an era with

unmatched mortality decline, driven by innovations in disease control technologies. I create an

index of early childhood disease exposure that exploits cross-state variation in pre-intervention

disease prevalence, and time variation arising from medical innovations during this period. The

results indicate that higher disease prevalence in childhood reduces adult education attainment

and earnings, and that public health interventions contributed to roughly 10% of the changes

in labor market outcomes between the 1901 and 1955 cohorts. The effect per unit of mortal-

ity decline is stronger in the second half of this period (1937-1955), when medications such

as penicillin and sulfa drugs were introduced. My findings also shed light on the benefit of

controlling infectious diseases in the developing world.
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1 Introduction

Health in early childhood has long lasting impacts (Barker, 1995; Almond and Currie, 2011a,b;

Elo and Preston, 1992). One of the most prevailing childhood health hazards in the early 20th

century U.S. was infectious disease. And it continues to be so in the developing countries today.

Great resources have been devoted to control infectious diseases worldwide. The Bill and Melinda

Gates Foundation alone has donated over 7 billion dollars to this cause. Do investments in reducing

infectious diseases generate large returns? This paper measures a major portion of the return – the

adult productivity gains from lower early childhood exposure to common infectious diseases. I

examine this question by looking at the impact of the public health interventions in the U.S. in

an era later known as the Mortality Revolution and the productivity gains of children growing up

during this era.

Between 1900 and 1955, the U.S. witnessed a substantial decline in infectious disease preva-

lence (Armstrong, Conn, and Pinner, 1999). The Centers for Disease Control and Prevention refers

to the control of infectious diseases as one of the top ten achievements of public health in the 20th

century U.S. (CDC, 1999). Durand (1960) referred to this period as a “revolution in the technology

of disease control”. Historians named this period the “Mortality Revolution” (Easterlin, 1995), be-

cause the deaths due to infectious causes of death declined by 90% within these years (Cutler and

Meara, 2003, also see Figure 1). The Mortality Revolution is divided into two periods according to

the type of technologies and public health interventions used to reduce infectious diseases. In the

First Mortality Revolution (1900-1936), the interventions are mainly health behavior campaigns,

sanitation and hygiene actions by the government, vaccination, and advancements in detection

techniques. The innovation in antibiotics and other antimicrobial medicine are often characterized

as the Second Morality Revolution (1937-1955) (Cutler and Miller, 2005). This paper is the first to

gauge the overall impact of these interventions on the adult labor market gains of children growing

up in this era, and the differential benefits from technologies during the First versus the Second

Mortality Revolution.

For children born and raised during the first half of the 20th century, these health interventions
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operated together to create a series of positive health shocks. Multiple interventions often took

place simultaneously and targeted a similar set of diseases1. Using an underutilized data set from

McGuire and Coelho (2011) and an index I named “predicted childhood disease exposure”, this

paper is the first to examine the effects of a set of most common infectious diseases on children’s

future economic outcomes.

A handful of studies have looked at the long run impact of public health interventions dur-

ing the Mortality Revolution era. Most of these studies focus on local public health interventions

that affected small parts of the population (Bleakley, 2007, 2010; Beach, Ferrie, Saavedra, and

Troesken, 2014). An exception is Bhalotra and Venkataramani (2011), who estimate the impact

of sulfa drugs, the most effective antibiotic prior to the discovering of penicillin. All these inter-

ventions together account for less than 16% of the decline in death from infectious diseases during

this period2. This paper substantially expands the set of public health interventions under exami-

nation. In addition, the existing studies found drastically different results. This paper proposes a

framework that helps reconcile the differences in the findings from the past literature according to

the types of interventions studied.

The biggest identification challenge is to meaningfully capture improvements in health that

were caused by public health interventions rather than economic growth or other confounding

factors. I overcome this problem by adopting and improving on an identification strategy proposed

by Acemoglu and Johnson (2007) and used in Hansen (2014)3. The method in Bleakley (2007,

2010) also captures a similar type of variation, but in a slightly different way.

My identification strategy is similar to an identification strategy that has recently been har-

1Additionally, some infectious diseases were often misreported and misdiagnosed as others (McGuire and Coelho,
2011; Troesken, 2004). When the morbidity or mortality of one disease is used as a proxy for the effectiveness of
public health interventions, measurement errors arise.

2Sulfa drugs can reduce mortalities from multiple causes. So I estimated an upper and a lower bound for the
impact of sulfa drugs. The upper bound is the change in total mortality between 1937 and 1942. The lower bound is
the change in all-age mortality from pneumonia and influenza between 1937 and 1942. The latter is from Bhalotra
and Venkataramani (2011). These numbers put the estimated impact of sulfa drugs between 65 and 116 per 100,000
population. Using the upper(lower) bound, past studies can account for 16% (9%) of the decline in infectious deaths.

3The early specification used in Acemoglu and Johnson (2007) is a long-difference model that compares observa-
tions from two cross sections. This method was criticized by Aghion, Howitt, and Murtin (2011) and Bloom, Canning,
and Fink (2014) for lack of initial health controls by country. This problem is resolved in both Hansen (2014) and in
the current paper.
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nessed to better understand the extent to which cross country and sub-country differences in de-

veloping countries’ contemporaneous Gross Domestic Product (GDP) relate to public health im-

provements (Acemoglu and Johnson, 2007; Hansen, 2014). That literature currently overlooks the

biggest beneficiaries of the public health interventions–children. Instead, current studies focus on

the contemporaneous health environment as it relates to the health of the adult population and

concurrent GDP growth. Figure 4 shows that the “disease burden4” falls heaviest on infants and

children. In this paper, I match adults to the disease environment during early childhood. In doing

so, I estimate the effect of exposure to infectious diseases during the part of the life-cycle when

individuals are most vulnerable to them, which provides an important extension of the existing

literature.

Based on the method in Acemoglu and Johnson (2007), my index of “predicted childhood

exposure” captures the degree to which individuals were exposed to infectious diseases during

early childhood. The index is based on the number of deaths in each states due to infectious

diseases. Mortality is commonly used as a proxy for morbidity and it is highly correlated with the

probability of catching an infectious disease.

This method exploits two types of variations. The first is the variation in disease intensity

across states in a period prior to the interventions as a proxy for variation in treatment intensity

generated from medical advancement. Figure 2 (a) shows that there was a great deal of geographic

variation in the 12 common infectious diseases prior to the interventions5. The second is the time

variation arising from a series of medical innovations and public health interventions. I test the

validity of the identification strategy by testing its exclusion restrictions. The list includes, but is

not restricted to, per capita income, education expenditure and other aspects of health. The results

are robust to these tests, signaling that “predicted childhood exposure” is uncorrelated with state

4Disease Burden is the impact of a health problem as measured by financial cost, mortality, morbidity, or other
indicators.

5The 12 common infectious diseases I used are smallpox, dysentery, typhoid fever, diphtheria, croup, tuberculosis
(all forms), pertussis, measles, scarlet fever, malaria, influenza and pneumonia. According to McGuire and Coelho
(2011), the most common infectious diseases also include cholera, typhus, and yellow fever. I did not include these
diseases because of data limitation in the national mortality rates from the vital statistics. These three diseases are also
less common than the 12 diseases I included.
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economic development and other public investment.

I find a large and significant improvement in education attainment and earnings among adults

who benefited from the U.S. public health interventions during childhood. Ceteris paribus, moving

from a state with high initial exposure to disease to a state with low exposure (from the 80th to

the 20th percentile of all states) increases high school completion by 4 percentage points, increases

overall education attainment by half a year, and increases earnings by 7 percent6. The interventions

explain roughly 10% of the increase in high school graduation rates between the 1900 and the

1960 cohorts. This is comparable to the large productivity gain that has brought about by the

improvement of the U.S. education system during the 20th century (Goldin and Katz, 2010)7.

These findings suggest that health capital may be an important channel of productivity gain during

the 20th century.

I also find that the benefit from a unit of mortality decline was much smaller during the First

Mortality Revolution (1900-1936) compared to the Second Mortality Revolution (1937-1955).

This pattern may be explained by the different types of innovations that occurred during the two

periods. The first Mortality Revolution focused on reducing the contraction of infectious diseases,

while the second introduced new drugs that treated and cured diseases (Connolly, Golden, and

Schneider, 2012; Bhalotra and Venkataramani, 2011).

Disease intervention has two off-setting effects on the health of the population, commonly

referred to as scarring and selection effects. Mortality rates cannot fully capture the health of the

survivors due to the existence of both scarring and selection effects. An increase in mortality may

imply better health if selection effect dominates. Therefore, the basic specification, which uses

a basic version of the predicted childhood exposure, will capture the net effect of selection and

scarring effects combined. The selection effect is positive, which means that the basic specification

in this study, as well as findings in most papers in this literature (Rawlings, 2012; Almond, 2006;

Almond, Currie, and Herrmann, 2011; Bozzoli, Deaton, and Quintana-Domeque, 2009), are biased

6I define high school graduation as finished 12th grade or higher. It does not necessarily imply obtaining a high
school degree. I cannot directly identify individuals with high school degrees in early censuses.

7Through growth accounting, Goldin and Katz (2010) argued that the change in secondary and higher education
accounted for 15% of the total growth in the twenties century.
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toward zero. In the extensions of the basic results, I disentangled scarring effects from selection

effects. The results suggest that selection effect after birth is tiny comparing to the scarring effect.

However, the selection effect in utero and around birth is stronger than scarring effect.

The rest of the paper proceeds as follows: Section 4 introduces the empirical strategy; Section

5 presents the data used to realize the empirical analysis; Section 6 provides the empirical results

with robustness checks and extensions; and Section 7 concludes.

2 Literature Linking Infectious Diseases to Productivity

Recent epidemiological studies suggest that infectious disease exposure in early childhood gener-

ates an inflammatory immune response that diverts nutritional resources away from physical and

mental development. Severe or repeated infections can lead to long run decline in adult health

or cognitive development (Finch and Crimmins, 2004, Crimmins and Finch, 2006, Eppig, Fincher,

and Thornhill, 2010). Findings in the economic literature support the importance of initial health on

adult productivity8. Particularly, emerging literature on public health intervention and the long run

outcomes of childhood disease environments support the hypothesis that early exposure to disease

can leave permanent scars on human capital (Bleakley, 2007, 2010; Bhalotra and Venkataramani,

2011; Beach, Ferrie, Saavedra, and Troesken, 2014; Almond, Currie, and Herrmann, 2011; Case

and Paxson, 2010).

Studies also suggest that better life prospects cause individuals to invest more in human cap-

ital (Ben Porath 1967, Kalemli-Ozcan, Ryder and Weil 2000, Soares 2005, Murphy and Topel

2005). Young people with better health make greater human capital investments, simply because

the stream of returns from an investment is expected to last longer (Jayachandran and Llera-

Muney,2009). If lower disease exposure increases investment in human capital, it should also

spur economic growth.

It is also well documented that health in early childhood has long lasting impacts on human

8The literature on early life influences can be divided into the in utero influence literature and the childhood
influence literature. The former, which is motivated by the “fetal origins hypothesis” (Barker, 1995), was reviewed
in detail by Almond and Currie (2011b), and Currie (2011). The latter is reviewed in Elo and Preston (1992) and in
Almond and Currie (2011a). Both branches of literature suggests that health in early life has long term consequences
on education, earnings, and future health.
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capital (Almond and Currie, 2011b,a). And there is a consensus that the decline in the prevalence

of infectious diseases in the U.S. was one of the most important health changes experienced by

children in the early 20th century (Costa, 2013). Only a small set of papers made causal connec-

tions between public health events in this era and children’s long term outcomes. The interventions

examined include hookworm and malaria eradication in the southern U.S. (Bleakley, 2007, 2010)

; water chlorination in the northeast region of the U.S. (Beach, Ferrie, Saavedra, and Troesken,

2014); and the introduction of sulfa drugs after 1937 (Jayachandran, Lleras-Muney, and Smith,

2010; Bhalotra and Venkataramani, 2011. Another related paper discusses the increased access to

these medical innovations among black children after the racial desegregation in the south due to

the 1964 Civil Right Act (Almond and Chay, 2006)9).

While these studies are empowered by the exogenous events examined, they are simultaneously

limited in their focus on specific geographic areas, time spans, and types of diseases. Many public

health interventions, such as vaccines and antitoxins, health behavior campaigns, penicillin (1941),

streptomycin (1943), erythromycin(1952), etc., may have contributed to even bigger declines in

mortality, but these have not been accounted for in the literature (See Figure 1 for a illustration of

the timing on some of the interventions). Yet the combination of these interventions may account

for more than two-thirds of the mortality decline from infectious causes in the twentieth century

(Figure 1). Using an underutilized data set from McGuire and Coelho (2011), this paper is the

first to examine and compare the effects of a set of most common infectious diseases on children’s

future economic outcomes.

In the eyes of children born and raised during the Mortality Revolution, the health interven-

tions operated together to create a series of positive health shocks. Because these interventions

took place nearly simultaneously and targeted a similar set of diseases, there is substantive value in

understanding their overall effects. Additionally, because some causes of infectious death can be

misreported (e.g. typhoid is often misreported as typhus (McGuire and Coelho, 2011), and often

misdiagnosed as malaria (Troesken, 2004)). Focusing on one type of disease morbidity or mortal-

9These researches on sulfa drugs and desegregation are also inspired by Jayachandran, Lleras-Muney, and Smith
(2010); Chay, Guryan, and Mazumder (2009), which study the short run outcomes of the same events.
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ity as a proxy for the effectiveness of public health interventions can lead to measurement error.

I utilize a measure of the disease environment that captures multiple interventions and diseases

during childhood. This overcomes issues of misreporting and misdiagnoses.

A branch of the development literature also studies the connection between public health inter-

ventions and productivity, focusing on the immediate impact of disease on the working population

(see a summary in Weil (2014)). ). Among these studies, Hansen (2014) examines the disease-

GDP relationship in the U.S. He found that life expectancy in a given state and year is negatively

but insignificantly associated with per capita GDP in the same year. The same result is supported

by a couple of other seminal research in this field that argues the reduction of disease only leads to

population explosion and no growth (Young, 2005; Acemoglu and Johnson, 200710).

The findings in Hansen (2014) does not imply that the elimination of diseases have little impact

on productivity in the U.S. because the paper, as well as similar studies on other countries, currently

overlooks the biggest beneficiaries of the public health interventions–children.

The public health interventions had huge impact on children’s health. The age profile of mortal-

ity for most infectious diseases peaks at age 0-511. In 1900, children aged 0-5 accounted for 30.4%

of all deaths, however, after the Second Mortality Revolution, this number fell to around 1%. Hoy-

ert, Kochanek, and Murphy (1999) found that the decline in infectious causes of death contributed

to a sharp drop in infant and child mortality, and to the 29.2-year increase in life expectancy at

birth12.
10Some international studies on disease and country GDP or the income of individuals living outside of U.S. found

large effects of exposure to disease (Shastry and Weil, 2003; Lorentzen, McMillan, and Wacziarg, 2008), but more
research supports a modest effect of disease on productivity both in the short-run or the long-run (Ashraf, Lester,
and Weil, 2009; Weil, 2010; Werker, Ahuja, and Wendell, 2007Ashraf, Lester, and Weil (2009) found the effect of
disease elimination on long-term growth is approximately 15% in magnitude. It even decreases per capita GDP if the
population size explodes in the short-run (Young, 2005; Acemoglu and Johnson, 2007; Rodriguez and Sachs, 1999;
Barro and i Martin, 1995) as a result of the Malthusian effect.

11Most infectious diseases have a overwhelmingly high death rate between 0-5 comparing to other ages, with the
exception of typhoid fever and tuberculosis of the lungs which mostly kill young adults. It is worth mentioning that
mortality of other forms of tuberculosis, unlike tuberculosis with the lungs, peaks at 0-5.

12This relationship is mechanical because life expectancy is a function of mortality at different ages, with special
emphasis on infant mortality. For example, Cutler and Meara (2003) estimate that in the U.S., 80% of life expectancy
improvements between 1900-1940 were due to reductions in death before age 45, 57% before age 15.
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3 Background on the Mortality Revolution

This project will investigate the long term impacts of public health interventions associated with the

“Mortality Revolution” which occurred between 1900 and 1955. During the Mortality Revolution,

the adoption of several new drugs and technologies greatly reduced the prevalence of a number of

infectious diseases and the deaths (Durand, 1960; Easterlin, 1995).

The general public started to realize the importance of public health service in the mid-19th

century. The report, The Sanitary Condition of the Labouring Population of New York (1848),

eventually lead to the establishment of the first public agency for health, the New York City Health

Department, in 1866 (The Future of Public Health,1988). By 1900, forty states had established

health departments. Following this, in the early half of the 20th century, the U.S. experienced a

period noted by an unprecedented decline in infectious diseases. Mortality from infectious causes

of death declined by 90% (Cutler and Meara, 2003) (Figure 1; Durand, 1960; Easterlin, 1995).

The “Mortality Revolution” is often divided into two parts. The First Mortality Revolution was

between 1900 and 1936, and is associated with an almost constant decrease in mortality of 1% per

year13. During this period, the roles of state and local public health departments expanded greatly,

as did identification and treatment of individual causes of diseases (Committee for the Study of

the Future of Public Health; Division of Health Care Services, 1988). Antitoxins and vaccines

achieved remarkable success in lowering death from diseases such as smallpox, cholera, rabies,

plague, typhoid, diphtheria, and tuberculosis14 (CDC, 1999). Water filtration and chlorination also

reduced water-borne diseases such as typhoid and cholera (Troesken, 2004; Cutler and Miller,

2005). More emphasis was put on health education and the promotion of healthy habits (Ewbank

and Preston, 1990). Due to the particular vulnerability of children and pregnant mothers to infec-

tious diseases, special funds were allocated to their care. The Children’s Bureau was established

13The 1918 influenza epidemic briefly interrupted the decline in mortality rate, but it soon recovered back to its
original path.

14Some vaccines and antitoxin serums were developed prior to 1900 (smallpox, cholera, rabies, and plague), and
others were invented or licensed after 1900 (typhoid (1914), diphtheria (1923), tuberculosis (1927)). Some are invented
after 1936 (influenza (1945), pertussis (1949), yellow fever (1953) polio (1955)). But these vaccines had relatively
smaller impact on mortality compares to the earlier vaccines. The years in the parenthesis are years in which each
vaccine was licensed after the Biologics Control Act of 1902.
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in 1912, which assisted state health campaigns, and later provided obstetric care, as well as other

types of health care, to children and mothers.

The Second Mortality Revolution occurred between 1937 and 1955, and is associated with a

more rapid decline in mortality. Mortality declined by roughly 2% per year (Cutler and Meara,

2003; Hansen, 2014; Armstrong, Conn, and Pinner, 1999). Rapid public health improvements in

medicine, as well as economic growth, are believed to have contributed to this phenomenon (Cutler

and Miller, 2005; Ewbank and Preston, 1990; Lleras-Muney, 2002; Fogel, 1994; McKeown, 1976,

etc.). The Second Mortality Revolution is also referred to as the “big medicine” period. It was

initiated with a wave of drug innovations: sulfonamides (or sulfa drugs, 1935), penicillin (1941),

streptomycin (1943), para-aminosalicylic acid (1944), and isoniazid (1952) (Hansen, 2014). The

New Deal (1933-1936), provided funds for more federal involvement in public health. Research

institutions such as the National Institutes of Health (NIH) were established to tackle more infec-

tious diseases. A few more vaccines are also invented during this period. Such as influenza (1945),

pertussis (1949), yellow fever (1953) polio (1955).

Overall, the First Mortality Revolution focused on reducing the contraction of infectious dis-

eases; while the second focused on developing new drugs to treat symptoms and cure diseases (

Connolly, Golden, and Schneider, 2012; Bhalotra and Venkataramani, 2011). As a result, an in-

fected individual would receive better treatment and suffer from less morbidity during the Second

Mortality Revolution versus the First Mortality Revolution.

4 Empirical Strategy

4.1 General Model of Disease Burden and Productivity

To examine the long run outcomes of childhood exposure to infectious diseases and individual

productivity, I use synthetic panel data and a model that leverages variation at the state and year of

birth-census year-gender-race level. Specifically, I estimate a variant of a difference-in-differences

model that allows us to compare adult outcomes among those born in a time with high infectious

disease prevalence to those born in the same state but in years with a low infectious disease preva-
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lence.

The key independent variable in the model is “ Predicted Childhood Exposure” to the most

common infectious diseases (PredChildExp). It is a proxy of childhood disease exposure by

cohort and state of birth15. The use of this variable allows me to measure the causal impact of

changes in disease exposure on outcome variables of interest. Employing this variable allows me

to avoid omitted variable bias, such as local economic growth, education expenditure, and other

health/health care improvement. After introducing the components in the estimation equation, I

will describe this measure in greater detail.

Ybtcgr = ρPredChildExpbc +Xbtcgrθ

+δt−c + δbt + δrc + δrb + δrt + δgc + δgb + δgt + εbct, (1)

where Ybtcgr denotes an outcome variable in adulthood for individuals of a specific gender (g), race

(r), birth state (b), birth cohort (c), and observed in census year (t). PredChildExpbc is a proxy

of childhood disease exposure for individuals who were born in state b, and year c. It also reflects

the probability of catching infectious diseases. The details on how to create this variable are in the

following section. I will also argue that this variable is orthogonal to the error term εbct. X includes

cell-level control variables such as marital status, and average number of children in the household.

These variables help control for labor supply choices due to marriage status and family size. In

the robustness checks, I also included other state-level controls, such as: per capita income, co-

hort size, education expenditure per capita, and density of schools, hospitals and doctors. δt−c are

age dummies, δbt is a vector of birth state by current year interactions that control for the impacts

common to people from the same birth state in the current year. The vectors δrc, δrb, δrt represent

interaction terms between race and birth cohort, birth state, and census year; and δgc, δgb, δgt, are

interaction terms between gender and birth cohort, birth state, and census year. In the some re-

gressions, I use gender-/race-specific samples, therefore, depending on the subsample, some of the

15One important underlying assumption I make is that the probability of migration is low between the year of
conception and age 5.
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interaction terms with race or gender should be removed from the regression model. These inter-

action terms are δrc, δrb, δrt, δgc, δgb, δgt. ie. gender dummy and interaction terms with the gender

dummy are not included in the gender specific regressions.

Equation (1) describes the basic specification I use in this study. In the robustness checks, I will

also include δbc, which is the birth state linear trend; and δRc, which is the birth region by cohort

dummy. I expect the magnitude of the coefficients on PredChildExp to reduce in these columns

because the state trends are going to capture some of the linear declines in PredChildExp.

4.2 Predicted Childhood Exposure to Infectious Diseases

The difficulty in estimating the effect of disease is omitted variable bias. States with greater de-

clines in infectious diseases may also experience greater economic growth, more education in-

vestment, or improvements in other aspects of health. In the absence of an exogenous source of

variation in disease mortality in the U.S., exposure to disease might be correlated with unobserved

state-level time-varying economic events, thereby biasing the coefficients.

This paper overcomes the problem of omitted variable bias by adopting and improving an

identification strategy, called “predicted mortality”16 that was proposed by Acemoglu and Johnson

(2007) and refined in Hansen (2014)17. A variation of this method is also widely adopted in studies

on public health interventions (Bleakley, 2007, 2010, and Bhalotra and Venkataramani, 2011, etc.).

Specifically I create a child specific predicted exposure to infectious diseases based on the

state and year in which the child was born. Because morbidity is hard to measure, especially in

historical data, mortality is commonly used to proxy for morbidity (Lleras-Muney and Glied, 2008;

Almond, Currie, and Herrmann, 2011; Case and Paxson, 2010; Bhalotra and Venkataramani, 2011;

Acemoglu and Johnson, 2007). In most of my specifications, I also use mortality rate to proxy for

16The “predicted mortality” was originally used by the development literature to better understand the extent to
which cross country and sub-country differences in contemporaneous Gross Domestic Product (GDP) relate to public
health improvements. Using this measure, Hansen (2014) finds that in the U.S., life expectancy in a given state in a
given year is negatively but insignificantly associated with per capita GDP in the same year.

17The early specification used in Acemoglu and Johnson (2007) is a long-difference model that compares observa-
tions from two cross sections. This method was criticized by Aghion, Howitt, and Murtin (2011) and Bloom, Canning,
and Fink (2014) for lack of initial health controls by country. This problem is resolved in both Hansen (2014) and in
the current paper.
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the prevalence of infectious disease. In the robustness checks, I also explore the differences across

diseases that generate the same amount of mortality18.

The “predicted childhood exposure” reflects the prevalence of multiple common infectious

diseases. For each common infectious disease, the variable captures two components. The first

component exploits the decline in national mortality from infectious diseases, which is mostly

due to medical and drug innovations (CDC, 1999)19. The second component is the state’s pre-

intervention mortality rate. States with higher disease prevalence prior to the medical intervention

should have benefited more from it, so this component provides a measure of the intensity of

the treatment. For example, when sulfa drugs were invented, the states with high prevalence of

pneumonia or scarlet fever exhibited more mortality decline than those without these diseases.

This method is similar in spirit to a “shift-share” index, which captures exogenous labor demand

shocks (Bartik, 1991; Katz and Murphy, 1992; Blanchard and Katz, 1992)20.

Specifically,

Predicted Annual Mortality of One Disease d : pdst =
Md

t

Md
t0

Md
s,t0

(2)

Predicted Annual Mortality of Multiple Infectious Diseases : Pst =
∑
d∈D

pdst (3)

predicted childhood exposure : PredChildExpbc =
1

7

c+5∑
i=c−1

Pbi (4)

The first term in equation (2), Md
t

Md
t0

, represents the ratio of national mortality rates from base year

to year t. Md
t and Md

t0
correspond to the mortality rates from a specific disease (d) in a specific

18In section 6.4.1, I also translate these mortalities into a uniform measure of healthy life years lost due to disease.
As I will explain in the coming sections, I do not use the loss of healthy life years as the main specification because
1) only a subset of diseases have this measure and 2) the measures are only true at the average level to the sample of
population used to calculate this measure. Great caution should be used the interpretation of these results.

19The information on the timing of state-level introduction of each technology is not available and would not be
useful because it is likely to be endogenous to economic growth of the state, among other factors.

20The original shift-share variable combines the magnitude of the national labor demand shocks by industry, and
the initial share of each industry in a given state to capture the exogenous labor demand shocks by state.
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year (t) and base year (0), respectively. The second term Md
s,t0

is the base year mortality rate from

disease d in state s. If the second term is higher, the state is more susceptible to the technological

changes relating to disease d. Accordingly, the “predicted annual mortality rate from multiple dis-

eases” in equation (3) is a summation of the predicted mortality rate of each disease. The set of

diseases (D) I use to construct the predicted mortalities contributed significantly to child mortality

and morbidity in the early 20th century (Cutler and Meara, 2003). They are the most common

infectious diseases in those times (McGuire and Coelho, 2011). These diseases include smallpox,

dysentery, typhoid, diphtheria, coup, tuberculosis, influenza, pertussis, measles, pneumonia, scar-

let fever, and malaria21. The fixed base year prior to the birth of all the cohorts in my sample22, t0,

is set at 1900,

To calculate the average childhood exposure to infectious disease, I average the annual pre-

dicted mortalities from early childhood years. I arbitrarily define early childhood to be the year of

conception through age 523, a total of seven years, because infectious causes of death concentrate

within this age group (Figure 4 shows the death from infectious diseases by age group). Therefore,

the “predicted childhood exposure”, or PredChildExpbc, is an average of the mortality of seven

consecutive years for each cohort and state of birth. For cohort c born in state b, the average is

from year c-1 to c+5 in state b. I refer to this age span as “age -1 to 5” in the rest of the paper.

Substituting the terms in equation (2) and (3) into the formula for predicted childhood exposure,

we get

PredChildExpbc =
1

7

c+5∑
i=c−1

Pbi =
1

7

c+5∑
i=c−1

∑
d∈D

Md
i

Md
t0

Md
b,t0

=
∑
d∈D

(
1

7

c+5∑
i=c−1

Md
i )

1

Md
t0

Md
b,t0

(5)

21The most common infectious causes of death also include diarrhea and fever, but those are usually undiagnosed
diseases from unknown causes. Therefore, they are excluded from this exercise.

22I will perform robustness checks where the base year is many years earlier than the earliest sample in the re-
gression. A similar technique is used in the constructing of a shift-share instrument to reduce correlation between the
constructed shift-share variable and the error term. The method was not used in any of the previous literatures studying
disease mortality (ie. Acemoglu and Johnson, 2007; Hansen, 2014; Bleakley, 2007 ).

23This is consistent with the early influence literature.
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Let M
d

child denotes the average childhood mortality of disease d 1
7

c+5∑
i=c−1

Md
i , then

PredChildExpbc =
∑
d∈D

(
M

d

child

Md
t0

)(Md
b,t0

)

=
∑
d∈D

(National Mortality Relative to t0 ∗ State Base Year Mortality)d (6)

The “predicted childhood exposure” exploits both the national mortality decline brought by a broad

selection of public health efforts and the approximated intensity of intervention in each state. Its

first component (M
d
child

Md
t0

) is a ratio of state mortality in the year 1900 and the year in question. It

represents the mortality that the current cohort experiences, relative to the mortality in 1900. In

the year 1900, this ratio is one, and when the disease is eradicated, the ratio becomes zero. By

construction, PredChildExpbc is unrelated to unobservable state-level time varying events. In

the robustness checks, I test the validity of this measure by including additional control variables

in the basic specification. Those state-year control variables include: per capita income, cohort

size, population size, number of schools per square mile, education expenditure per capita, hos-

pitals per square mile, number of doctors per capita, deaths from other major diseases, percent

of urban/manufacture industry in the population, and farm area in acres. These variables are not

available in all years for all states, which is why I cannot control for them in the basic specification.

Instead, I use them to prove that the index I created in the basic specification do not suffer from

omitted variable bias.

5 Data

5.1 Mortality

The construction of “predicted childhood exposure” requires two datasets – the state-level mor-

tality by infectious causes in 1900 and national-level mortality from 1901 to 1960 of the same

infectious deaths.

The first data set, the state-level mortality by specific causes in 1900, comes from McGuire
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and Coelho (2011). This is an underutilized dataset. The authors carefully assembled these state-

level mortalities from the United States census mortality data24. The data cover 49 states in 1900.

The mortality rate from all infectious causes of death collected by the 1900 census were available

through this data set. I choose to use the following 12 common infectious diseases: smallpox,

dysentery, typhoid fever, diphtheria, croup, tuberculosis (all forms), pertussis, measles, scarlet

fever, malaria, influenza and pneumonia. They capture the most common infectious diseases that

could be diagnosed in 1900 (Armstrong, Conn, and Pinner, 1999). And because they are common,

they are also well documented in the vital statistic mortality records, which allows me to observe

their change throughout the years. As discussed earlier, figure 2 (a) and figure 2 (b) demonstrate

the large geographic variation in this data set. Figure 2 (a) maps this geographic variations in

diseases prior to the interventions. It shows the considerable variation in the 12 common infectious

mortalities in 190025. If we look at the each infectious cause of death, mortality from a single

disease also demonstrates considerable geographic variation. For example, figure 2 (b) illustrates

the state-level variation of tuberculosis mortality. In this figure, the mortality rate in California

is 16 deaths per 10,000 population higher than North Dakota. Therefore, streptomycin, which is

effective in treating tuberculosis, should reduce more mortality in California than in North Dakota.

Past literature that studies infectious causes of death in the historical U.S. usually used the

vital statistics data set because it was more complete than the census mortality data26. I choose

to use the data in McGuire and Coelho (2011) because the vital statistics do not provide enough

information about the First Mortality Revolution. The vital statistics cover 10 registration states

in 1900. The coverage increased to 25 states in 1915 and 48 states in 1936. Because the First

Mortality Revolution is from 1900 to 1936, the data in McGuire and Coelho (2011) is a much

better data set than the vital statistics for this research. Therefore, I use McGuire and Coelho

(2011) in most of my regressions and perform robustness checks with data from vital statistics.

24The numbers were originally reported in United States Bureau of the Census 1902b table 19 and 1902c, table 4
and 8, in the form of number of deaths in each state by cause, gender, race, age, and sometimes citizenship.

25They are smallpox, dysentery, typhoid fever, diphtheria, croup, tuberculosis (all forms), pertussis, measles, scarlet
fever, malaria, influenza and pneumonia

26This data is made available through the National Bureau of Economic Research by Grant Miller.
http://www.nber.org/data/vital-statistics-deaths-historical/
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The second data set, the national mortality data, is from the United States Vital Statistics,

made available through the Center of Disease Control and Prevention (Grove and Hetzel, 1968). I

digitized the 1901-1960 mortality by infectious causes from these historical vital statistic volumes.

Combining the two data sets allows me to create the predicted annual mortality for the follow-

ing infectious diseases: smallpox, dysentery, typhoid fever, diphtheria and croup27, tuberculosis

(all forms), pertussis, measles, scarlet fever, malaria, influenza and pneumonia. These data would

allow me to calculate predicted mortality (Equation (2)) for 47 states between 1900 and 1960.

From these numbers, I calculate “predicted childhood exposure” (Equation (4)) between age -1 to

5 from 1901 to 195528.

5.2 Long-run Outcomes Data

The analysis requires information on an individual’s year of birth, childhood location, and adult la-

bor market outcomes29. This information is available in the Census and the American Community

Survey (ACS). The ACS is the successor to the Census long-form and provides similar detailed de-

mographic and economic information. For my analysis, I use the 1950-2010 Census and the 2010

American Community Survey. I restrict the analysis to individuals born in the U.S. between 1901

and 1955, the years of the Mortality Revolution. The individuals must have been living in the U.S.

at the time of the interview and was between 30 and 60 years old. Individuals born in North/South

Dakota, Alaska, Hawaii, and the District of Columbia are eliminated due to lack of disease mor-

tality data. I drop all individuals for whom information on birth year, birth state, gender, or race is

allocated.

The outcome variables cover the topic of education attainment, employment status, and earn-

ings. The outcome variables pertaining to education attainment include indicators for having at-

27The term diphtheria and croup is used as a title in the International List, but as deaths from croup are really deaths
from diphtheria, the term croup is now seldom seen on death certificates. (Bureau of the Census, 1922)

28Considering the drastic increase in pneumonia and influenza deaths during the 1918 Spanish flu pandemic, I also
try to exclude this cohort from any mortality measure in the robustness checks. These results are similar to the baseline
results reported in the paper, and are available upon request. For a summary description of this measure, see table 1

29For details, please refer to Section A1.
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tended 12th grade30, for having attended 4 years of college, and for years of education31. The

outcome variables about work status include indicators for currently employed, annual earnings,

and logged annual earnings in 2011 dollars. They also include measures for earning more than

20,000, 40,000 and 60,000 dollars. An additional outcome variable is Duncan Socioeconomic In-

dex (SEI). The SEI is a measure of occupational status based upon the income level and education

attainment associated with each occupation in 1950 (IPUMS32). A total of more than 300 occupa-

tions are indexed. The measure can capture more between-occupation shifts in skill requirements

for jobs (Bleakley, 2010); therefore, it may be interpreted as a better measure of ability than years

of education.

To create the sample for analysis, I drop all the individuals for whom education, earnings,

or employment are imputed. This group of individuals would later be used to create my main

regression sample. A total of 17.7 million individuals are in the main sample. All the variables

are created based on the same number of individuals, except for SEI and logged earnings. Because

SEI has a higher chance of being missing33, I use the subset of people in my full sample that

reported a valid SEI for this regression. Logged Earnings exclude anyone with zero earnings,

therefore, it also is constructed using a subsample of the full sample with non-zero earnings. The

individual data are then collapsed into cells defined by gender, race, cohort, state of birth, and year

of observation. Then I calculate cell-level means of each outcome variable and control variable

taking into account the personal weights. The regressions are later weighted by the total number

of individuals represented by the observations in the cell.

5.3 Additional Control Variables

The state time series data I controlled in multiple robustness checks include: deaths from other

major diseases, state per capita income, cohort size, population size, number of schools per square

30Attended 12th grade does not imply obtaining a high school degree or equivalent. Degree information is not
available throughout the sample period.

31Years of education is approximated using a method introduced by Jaeger (1997).
32https : //usa.ipums.org/usa− action/variables/SEI#descriptionsection
33If a person failed to report his/her occupation, the SEI variable is considered to be missing. This leads to a higher

fraction of missing values in this variable than all of the other outcome variables.
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mile, education expenditure per capita, hospitals per square mile, number of doctors per capita,

percent urban/manufacture industry population, farm in acres.

The state per capita income variable is defined as state income divided by state population of

all ages. The state income from 1919-1960 combines two sources. National Industrial Conference

Board. Division of Industrial Economics. (1939) contains information from 1919-1928; and the

Bureau of Economic Analysis provides data from 1929-1960.

The cohort size at birth (number of live births per state and year) and additional mortality

controls come from multiple volumes of the Vital Statistics of United States. The vital statistics

do not include every state in 1900-1936, so the sample size is smaller whenever these variables are

included as controls. A set of baseline estimates, which includes the same state and years as the

limited vital statistics, is labeled as “basic specification” estimates.

Data on state characteristics are provided by Adriana Lleras-Muneys34. The data on hospitals

per square mile and number of doctors per capita were assembled from the American Medical

Associations American Medical Directory. The the number of schools and education expenditure

were collected from various volumes of the Biennial Survey of Education. The size of the manu-

facture population were from Census of Manufacture. The data on acres of farm land was reported

in the Statistical Abstract of the United States for 1910, 1920, 1925, 1930, and 1940. The percent

urban population was from decennial censuses. For farm acres and percent urban population, data

for years in between was generated using a linear interpolation by state.

5.4 Summary Statistics

Table 1 shows the summary statistics of the main dependent and independent variables in the study.

The number of observations – 37870 – indicates the total number of birth state-birth year-current

year-race-gender cells. All variables are based on a same number of individuals collapsed to cell

level, except the Duncan Socioeconomic Index (SEI) and the logged earnings. These two variables

have 36,309 and 36225 cell-level observations, respectively.

Table 1 also shows the range and variation of the key dependent variable, predicted childhood

34http://www.econ.ucla.edu/alleras/research/data.html
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exposure. Comparing the 1901 to 1955 cohorts, the average decline within a state is 5.5 deaths

per 1,000 for the predicted childhood exposure. Although the First Mortality Revolution was

responsible for 80 percent of these mortality reductions35, the Second Mortality Revolution had

the advantage of a faster rate of decline. Figure 5 shows the value of predicted childhood exposure

in a handful of states. The state with the biggest decline in predicted childhood exposure is New

Mexico, with a difference of 12.21 deaths per 1,000 state population. The sharp decline in its initial

years was the result of the control of smallpox. The sudden increase around 1918 was the result

of the Spanish flu pandemic. The state with the biggest decline in predicted childhood exposure is

Oklahoma, with a 2.31 deaths per 1,000 decrease. The median state is California, experiencing a

4.6 deaths per 1,000 change in predicted childhood exposure. In the 1901 cohort, the state at the

20th percentile predicted childhood exposure is Oregon, having 3.4 deaths per 1,000; and the 80th

percentile state is Virginia, with 7.8 deaths per 1,000. The difference is 4.4 deaths per 1,000.

6 Results and Discussions

6.1 Basic Results

Table 2 shows the basic results with a range of fixed effect choices. I gradually added the interac-

tion terms on to the regression until I reach my preferred specification shown in equation (1).

The first column of table 2 starts with a basic set of birth state, census year, cohort dummies, and

age dummies36. Column (2) replaces the birth state and census year dummies with their interaction

terms, which capture variations in labor market conditions, including business cycles, competition,

etc. In the preferred specification in columns (3), I add a set of interaction terms with the male

dummy and a set of interaction terms with the race dummies, including white, black and all other

races. The results are consistently negative in this column, showing that lower infectious disease

exposure during childhood leads to better outcomes. The coefficients are significant for most of the

35Within the 5.5 deaths per 1,000 decline in predicted childhood exposure, the First Mortality Revolution was
responsible for 4.4 deaths per 1,000 on average, while the Second Mortality Revolution was responsible for 1.1 deaths
per 1,000.

36A common misunderstanding states that one cannot simultaneously control for cohort, census year, and age dum-
mies. This statement is easily falsified with rigorous deduction.
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outcomes, with the exception of current employment status, and >= 4 Years of College, although

the coefficient on the latter is also close to being significant at the 10% level. The magnitude of the

results becomes slightly lower than in column (2). This is due to the higher benefits of mortality

decline on male and black populations. I will discuss this further in section A3.1.

To interpret the magnitude of the reduced-form estimates above, I put the effects on adult out-

come per unit of predicted childhood exposure into perspective. The predicted childhood exposure

is not directly comparable to real mortality changes. It is composed of two parts – the effect on

adult outcome of a given childhood disease burden and the magnitude of decline of the disease

burden during the Mortality Revolution. The literature using this methodology usually focus on

the interpretation of the first half – units of outcome change per unit of mortality rate – a number

that can be applied to other situations with known infection rates (Bleakley, 2010; Bhalotra and

Venkataramani, 2011). But the second half of the parameter, the decline of disease burden over

time, is more interesting in this study. Therefore I interpret the coefficients in both ways.

Table 3 summarize the interpretation of the coefficients in the preferred specification (table

2 Column (3)). Using the traditional interpretation, a change in childhood disease exposure cor-

responding to a move from the 80th to the 20th percentile of the pre-intervention mortality rate,

which is roughly 4.4 deaths per 1000, resulted in a 4 percentage point increase in the probability of

completing 12th grade, 1 percentage point increase in chance of attending 4 years of college, a 7

percent increase in annual earnings, and an improvement in the person’s social-economic standing

by 1%.

Comparing the 1901 cohort to the 1955 cohort, the average decline within a state is 5.5 deaths

per 1,000 on the predicted childhood exposure. The first row in table 3 multiplies the average

predicted mortality decline between 1901 and 1955 cohorts with the coefficients reported in the

preferred specification. This number represents the improvement in the outcome variable due to

the entire Mortality Revolution. In the second row, I used the census to approximate the total

improvement between the 1901 and 1955 cohorts in each outcome variable37. The third row then

37These are mean differences in weighted averages of outcome variables measured when each cohort is in their 40s.
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summarizes the share of the total labor market improvement that resulted from the Mortality Rev-

olution. I obtain this number by dividing the first row by the second row.

I find large and significant improvement in high school attainment and earnings among adults

who benefited from the Mortality Revolution during childhood. The effect contributes to 7% to

15% of the changes in various measure of education and earnings between the 1901 and the 1955

cohort. More specifically, comparing the 1955 cohort to the 1901 cohort, an average decline of 5.5

deaths per 1,000 population improves high school completion by 5.5 percentage points. Measured

in their 40s, the high school completion rate grew from 25% of the 1901 cohort to 93% of the 1955

cohort. This would imply that the Mortality Revolution accounts for about 8% of the total increase

in high school attainment. Similar calculations for years of education and earnings in 2011 dollars

gives effects of 14% and 9%, respectively. In their seminal study, Goldin and Katz, 2010 argued

that education reform in the 20th century contributed to 15% of the total increase in productivity.

This is larger than what I find for infectious disease control, but comparable in magnitude.

6.2 Test for Omitted Variable Bias

The states with higher mortality declines may also have higher state economic growth, more edu-

cation investment, or improvement in other aspects of health. I argue that the predicted childhood

exposure is exogenous to these unobserved state-by-cohort level variations. To test this claim, I

control for the likely sources of omitted variable bias using a limited set of years in which those

controls are available. Table 4 reports these results. The results show that the measure is robust

in controlling for local economic growth, education expenditure, and other health/health care im-

provement.

Panels A.1, B.1, C.1 and D.1 report the results using the basic specification on a limited set of

cohorts (states) for which the control variables are available. They serve as a point of comparison

for the other regressions in the same panel. The regression uses the same specification as column

(3) in Table 238.
38The magnitude of the coefficients here are larger than those in column (3) in Table 2 because of the change in the

cohorts covered by the sample. The later cohorts have a larger coefficient than the earlier cohorts. This is due to the
change in methods of disease control. The details will be discussed in section 6.5.
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Panel A.2 controls for local economic growth using state per capita income from 1920-1955.

Ordinary Least Squares (OLS) estimates will typically be biased downward because of reverse

causality and common shocks to income and health, such as local economic growth. After I control

for per capita income in panel A.2, the estimates hardly deviate from the baseline results in panel

A.1.

Another source of bias takes place when the states that invest in public health also invest in

other public goods, such as education. Panel B.2 tests the validity of the measure against this

hypothesis by controlling for state-by-year education expenditure per capita and the number of

schools per square mile. The results stay similar to the baseline results in panel B.1.

Alternatively, the lower mortality from infectious disease might be the result of better quality

of health care in the state, which simultaneously reduces disease mortality and improves other

aspects of health. In panel B.2, I control for number of doctors per capita and number of hospitals

per square mile, which are proxies for the provision of health care. In panel C.2, I also control

for the change in other major causes of death, such as diabetes, circulatory diseases, cancer and

tumors. Both panels provide robust estimates compared to their references.

Panel D tests the validity of using data from McGuire and Coelho (2011). The data in McGuire

and Coelho (2011) are assembled from the Census Mortality Module. Some literature critiqued the

incompleteness of these data (Crimmins, 1980) because the deaths used to calculate these state-

level estimates are not 100% of all deaths. I substituted the base year mortality from McGuire

and Coelho (2011) with the vital statistics mortality by cause. I then calculated another version of

PredChildExp using the same method, except that the data now cover fewer years in some states.

The panel D.1 uses the McGuire and Coelho (2011) data and D.2 uses the predicted mortality

from the vital statistics data. The small differences between the two rows are probably due to the

missing states in the vital statistics data in early years. But the differences are mostly within one

standard deviation.
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6.3 Age-Specific Weights

From figure 4 shows that disease exposure at different ages poses different health threats. Exposure

under age 1 is very likely to cause severe damage to health, or even mortality, while the degree of

severity declines with age. To incorporate this observation into the formula of PredChildExp, I

take the infectious mortality at age i as a measure of importance of disease environment in age i. I

re-weight each age using the following formula:

PredChildExpbc =
c+5∑
i=c−1

(Pbi ∗Wi) (7)

where Wi is the infectious mortality in age i divided by total mortality from age -1 to 5. This

weight represents how susceptible a child is to shocks at age i. The result of this exercise is in table

7 panel B. The result is consistent with the basic specification.

6.4 Scarring, Selection, and Fertility Response

Disease intervention has two off-setting effects on the health of the population, commonly referred

to as scarring and selection effects. Scarring is the long-term effect of the epidemic on survivors’

health, which translates into a negative health shock, or morbidity. Selection occurs when the least

healthy members of a population are removed through epidemic related mortality, which translates

into a positive health shock through mortality. The coefficients in previous tables captures the net

effect of selection and scarring. The two effects operate in opposite directions, which means that

the coefficients in the basic specification are biased toward zero.

6.4.1 Morality and Morbidity by Type of Disease

Since selection effect is a result of mortality, diseases with a higher chance of fatality should have

higher selection effects. To test this hypothesis, I compare the diseases with higher mortality

to those with lower mortality. Among the 12 common diseases studied in this paper, smallpox,

typhoid, tuberculosis, measles, and scarlet fever have case-fatality ratios39 of higher than 15% on

39Case-fatality ratio is the fatality rate among the infected population.

24



average, and the rest of the diseases have case-fatality ratios that range from 5% to less than 1%40.

Table 5 shows that mortality decline in diseases with high mortalities results in lower long-term

productivity gain per death prevented41.

An alternative way to examine the discrepancies between mortality and morbidity is to use the

disability weights. Disability weights are estimated by the WHO and mainly used in the calculation

of Disability Adjusted Life Year (DALY). A disability weight is a weight factor that reflects the

severity of the disease on a scale from 0 (perfect health) to 1 (equivalent to death). It becomes

a measure of disease morbidity by translating the number of disease cases into Years Lost due to

Disability (YLD). I use these disability weights to re-weight the measure of disease exposure in

the following way:

PredChildExpbc =
1

7

c+5∑
i=c−1

∑
d∈D

(pdbi ∗Wd) (8)

where Wd is the disability weight divided by the case-fatality ratio, both specific to disease d. The

case-fatality ratio is taken from the CDC pink books42. The reason to incorporateWd is to translate

mortality into life years lost or YLD. The YLD provides a unified measure for all diseases, cohorts,

and geographic regions, which is useful for interpretation of the coefficients. Dividing mortality

by case-fatality ratio renders the total number of cases. Then, the number of cases is multiplied by

disability weights, which produces the disease-specific life years lost. Adding different diseases

together provides a YLD measure of all infectious causes for the entire state-cohort.

The WHO provides the disability weights for the following diseases: diphtheria, pertussis,

tuberculosis, measles, malaria, and pneumonia. Using only these diseases, I show the estimates

40A case-fatality ratio of 15% in this case implies that, given the medical conditions in the early 1900s, the chance
of mortality after contracting the disease is 15%. The case-fatality ratios are not very accurate because they are subject
to changes in medical conditions, but the distinction between high and low fatality diseases is quite clear.

41The magnitude of these coefficients should be carefully interpreted. It does not directly imply that high mortality
diseases have little impact on long run outcomes. For example, if the typical case-fatality ratio of a high mortality
disease is 15, and of a low mortality disease is 5, then for each death prevented, the high mortality disease has a 70%
lower long run effect on percent population earning higher than $20,000. Assuming that each disease infected 100
patients, then the total aggregate long-term effect of high mortality disease on the percent of population earning more
than $20,000 is still more than twice the amount compared to low mortality diseases.

42These case-fatality ratios usually contain an upper and a lower bound; the average is used here.
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from the basic specification in table 7 panel B.1. The results with the re-weights are shown in

table 7 panel B.2. The coefficient can loosely be interpreted as the result of losing one life year

during each year of early childhood due to disease exposure. However, there are rounding errors

and measurement errors in both the case-fatality ratio and the disability weights, so these results

should be taken with a grain of salt.

6.4.2 Control for Fertility Response and Selection Effect after Birth

Cohort size is intrinsically connected with the size of the selection effect. Fertility responds to

mortality. The death of a child may cause replacement of the child, and expectations about future

mortality may cause more total births per family (Preston, 1978; Rosenzweig and Paul Schultz,

1987; Montgomery and Cohen, 1998; Palloni and Rafalimanana, 1999; Bleakley and Lange, 2009).

A recent paper by Nobles, Frankenberg, and Thomas (2014) studied the fertility repercussions of

the 2004 Indian Ocean tsunami. They found that mothers who lost one or more children in the

disaster were significantly more likely to bear additional children. In light of these studies, it is

possible that children born in the years with sudden mortality decline would face more domestic

or labor market competition, because the survival rate increased.

In table 6, I control for the selection effect and the fertility response in order to reveal the

magnitude of the scarring effect. I do so by controlling for the initial cohort size and the amount

of attrition within each birth state and cohort. I use the size of the cohort at birth to capture the

fertility responses due to lower mortality and the survival rate of infants to adulthood to capture

the selection effect after birth. To create this survival rate, we use the census data to estimate

the number of people from each birth state and cohort that survived until the census year. The

percent of infants who survived until the census survey year is calculated by dividing the survived

population size by corresponding cohort size.

Panels l B and C show that the effects of childhood exposure to infectious disease, net of

fertility response and selection, stayed close to the baseline results. This implies that the scarring

effect dominates this period and the selection effect after birth is relatively small.
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6.4.3 Age-Specific Dynamic in Scarring and Selection Effects

To study the effects of mortality shocks at different ages of exposure, I substitute the average

predicted exposure between age -1 to 5 (PredChildExp) in equation (1) with a series of average

predicted exposure between age -1 to 0, 1 to 2, 3 to 4, and 5 to 6.

Ybctgr =
∑

i=c−1,c+1,..c+5

ρiPbi +Xbcθ + δg + δr + δa + δbt + δbc+ εbct (9)

The coefficients ρi are plotted in figure 7. The results reveal that disease exposures between ages 1

to 4 have a larger negative impact than shocks after age 5. This is consistent with the age-specific

characteristics of infectious disease, which mainly harms children under age 5 (figure 4).

One interesting phenomenon is the positive effects on the disease exposure from the year of

conception to age 1. One likely hypothesis is that in the earliest years of childhood, all the children

at the lowest end of the health distribution fail to survive. This selection effect is so large that it

overpowers the scarring effect and results in a positive estimate (Rawlings, 2012; Almond, 2006;

Almond, Currie, and Herrmann, 2011; Bozzoli, Deaton, and Quintana-Domeque, 2009). I test

this hypothesis by incorporating infant mortality into the regression as an imperfect proxy for the

intensity of selection effect in utero and in the year of birth. Figure 8 compares the ρ for age -1

to 0 before and after including infant mortality in the control variables. The findings confirm the

hypothesis. After imperfectly controlling for the selection effects in the earliest stage of childhood,

the coefficients decrease in magnitude and become negative in sign, which is consistent with the

sign of the scarring effect.

6.5 Results by First and Second Mortality Revolution

In this section, I compare the effects of medical advancements and public health intervention during

the First Mortality Revolution with those during the Second Mortality Revolution.

To examine the differences between the First and the Second Mortality Revolution, I estimated

the labor market effect of childhood disease exposure by groups of vintage cohorts. I calculated

equation (1) repeatedly, each time using data from 20 consecutive cohorts. The coefficients of
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PredChildExpbc from all these regressions are plotted together in Figure 6. For example, the

value corresponding to year 1936 is the coefficient ρ in equation (1), estimated based on 1917 to

1936 cohorts.

The figure shows how the key coefficient ρ changed over time. The effect per mortality gain is

much stronger in the Second Mortality Revolution, in which people benefited from the availability

of new drugs during childhood. The results are consistent across different outcomes43.

This pattern can be explained by the types of interventions in the two periods. The First Mor-

tality Revolution focused on reducing the contraction of infectious diseases through encouraging

healthier habits and introducing chlorinated water, while the second focused on new drugs that

treated the symptoms and cured the diseases (Connolly, Golden, and Schneider, 2012; Bhalotra

and Venkataramani, 2011). These results suggest that each mortality prevented is accompanied by

more productivity gain in the Second Mortality Revolution44.

This finding also reconciles the discrepancy in the existing literature. Bhalotra and Venkatara-

mani (2011) found that 1 per 1,000 mortality decline caused by sulfa drugs, which were invented

during the Second Mortality Revolution, increased family income by 8 percent45. On the other

hand, Beach, Ferrie, Saavedra, and Troesken (2014) found that a similar mortality change due to

water treatment, which took place during the First Mortality Revolution, increased earnings by

merely 1%46. These past results are consistent with the findings in this paper.

43To minimize the impact of the mortality spike in 1918 due to the influenza pandemic, I also provide estimates
taking out the 1918 cohort using the same repeat estimation method. The coefficients are plotted in figure A3. The
results are similar to those displayed in figure 6.

44In general, the case-fatality ratio had decreased during the early 20th century (figure A1). This implies that the
difference between the two periods is even bigger than assuming that the case-fatality ratio is unchanged.

45Sulfa drugs are very effective in treating pneumonia. Bhalotra and Venkataramani (2011) find that sulfa drugs
brought a 0.26 deaths per 1,000 decline, which leads to a 2.05 percentage point increase in probability of completing
high school, and 2.11% change in family income.

46Beach, Ferrie, Saavedra, and Troesken (2014), however, find that the elimination of typhoid by water chlorination
in 75 cities during the First Mortality Revolution brought a 1% increase in earnings and a one-month increase in
education attainment for males. The elimination of typhoid resulted in a decrease of roughly 1 death per 1,000. Other
water-borne diseases, such as cholera, are also affected. Beach, Ferrie, Saavedra, and Troesken (2014) use typhoid
mortality to proxy for the other diseases.
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6.6 By Income Distribution

Figure 9 shows an interesting effect of disease exposure on different income groups. The result is

counter-intuitive. The richer group seems to suffer a larger loss from the same amount of disease

exposure. In figure 9, the y-axis demonstrates results by ex post income distribution. Each point

is an independent regression, with the outcome variable indicating the probability of falling into

an earnings group. For example: the point corresponding to $20,000 is the coefficient in front of

PredChildExp, with the outcome variable being earnings more than $20,000.

The effect on the percentage of population earning more than $20,000 was consistently closer

to zero and insignificant compared to earning more than $40,000. If I assume that overall social

mobility is low, then these results indicate that underprivileged populations, on average, benefited

less from the mortality revolutions. Such a result is consistent with the findings in Cutler and

Lleras-Muney (2008), where they pointed out that higher socioeconomic status groups are more

likely to use newly approved drugs. If high income individuals in the early twentieth century were

using more of the drugs and vaccines, they could also have had a bigger response to a unit of

mortality decline.

Alternatively, this dynamic can be put in the framework of scarring and selection effect. Con-

sider the following setting: Assume there are two groups of people; one of them is richer, has

access to better medical care, and is unlikely to die from infectious diseases; the other group is

poorer and these people always die as soon as being affected by disease. Assume disease infection

is random, and people cannot recover fully to their original productivity after suffering from the

disease. Then the richer group would have a negative change in average productivity, while the

poorer group has zero change in mean productivity. A more formal version of this argument is

proved mathematically in Appendix Section A2.

The same pattern is also commonly found in other specifications. Figure 6, figure 10, figure

A247, and figure A3 all show results on the percent earning more than $20,000 and $60,000. Both

the level of the coefficient and the change across the 1936 threshold were smaller in the graph

47Female subsample does not follow this pattern. This might be the result of household dynamics in labor supply.
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corresponding to lower income categories.

The selection and scarring channel I mentioned and the SES channel mentioned in Cutler and

Lleras-Muney (2008) complement each other. It is likely that both channels exist.

7 Conclusion

This paper studies the effect of infectious disease control during early childhood on adult labor

market outcomes. I exploit the exogenous variation in the public health projects and drug inno-

vations during the Mortality Revolution in the United States, an era with unmatched mortality

decline due to infectious disease control. Exploiting cross-state variation in pre-intervention in-

fectious causes of death, along with time variation arising from medical innovations during the

Mortality Revolution, I create a measure of disease exposure during early childhood. The results

indicate that higher disease exposure in childhood reduces adult education attainment and earnings.

The Mortality Revolution reduced infectious mortality and contributed to approximately 10% of

the changes in labor market outcomes between the 1900 and the 1960 cohort. These results are ro-

bust to controls of local economic development, education expenditure, and improvement in other

aspects of health, etc.

These results shed light on a new source of growth during the twentieth century. The contri-

bution by education, although tremendous (Goldin and Katz, 2010), may not be the only source of

productivity gain. Health capital accumulation, especially through lower childhood disease expo-

sure, may also be an important pathway for the drastic change in labor force productivity during

this era.

This paper also finds that the effect per a unit of mortality decline is stronger in the Second

Mortality Revolution (1937-1955), when medication such as penicillin and sulfa drugs were intro-

duced. The United Nations set Millennium Development Goals to reduce mortality in developing

countries. As a response, massive amounts of resources were allocated to vaccination, water and

sewage treatment, and health education – the same combination used in the First Mortality Revo-

lution. According to this study, the effect per death prevented was stronger in the Second Mortality
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Revolution, plausibly due to the stronger effect of drugs on disease morbidity. Putting the worry

for antibiotic resistance aside, providing effective drugs should be considered as a key strategy in

achieving improved long-term economic outcomes in developing countries.
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8 Figures and Tables

Figure 1: Crude Mortality Rates for all Causes, Noninfectious Causes and Infectious Diseases

Graph adapted from Armstrong, Conn, and Pinner (1999). ”Biologics Control Act” in 1902 starts the national licensing of vaccines and serums.
The law was established in response to hundreds of deaths as a result of vaccination. “Milk and Animal” represents the discovery of low

temperature slow pasteurization by Milton J. Rosenau in 1906 that gradually became the standard. It also represents the starting point of a series of
efforts in animal control (Olmstead and Rhode, 2007). “Water Filtration” indicates the beginning of water filtration and treatment of water in cities

(Beach, Ferrie, Saavedra, and Troesken, 2014). “Use of Chlorine” indicates the first continuous municipal use of chlorine in water in Boonton
Reservoir in New Jersey, U.S. (American Water Works Association); “Thyphoid”, ”Diphtheria”, ”BCG”, ”influenza”, ”Pertussis”, and ”Polio”
indicates vaccine licensing years of corresponding disease. ”BCG” is the vaccine for tuberculosis, which was effective, but underutilized (“The

BCG vaccine” by Neville K. Irvine ). The “Influenza Pandemic” is in 1918; The mass production of Sulfa Drug is in 1937 (Bhalotra and
Venkataramani, 2011); the use of “penicillin” in March 1942 (CDC, 1999); The use of a series of drugs – “Streptomycin” is in 1943;

“Para-aminosalicylic” acid is in 1944; “Isoniazid” and “Erythromycin” are both in 1952;
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Figure 2: Infectious Causes of Death by State, 1900

(a) Infectious Causes

(b) Tuberculosis

Data from McGuire and Coelho (2011)
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Figure 3: Speed of Decline in Mortality Rates in the First and Second Mortality Revolution

The graphs is log crude mortality rates from the 12 common infectious causes of death that are used in the analysis. Mortality rate defined as
mortality per 1000 population in the U.S. The vertical line represents the year 1937. Prior to 1937 is referred to as the First Mortality Revolution,

later the Second Mortality Revolution. Data from Grove and Hetzel (1968)
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Figure 4: Mortality from Infectious Causes by Age

Data from Mortality Rates 1910-1920. (1923), include the 12 common infectious causes of death used in the analysis.
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Figure 5: predicted childhood exposure “PredChildExp” in a Selection of States

New Mexico is the state with the biggest decline in predicted childhood exposure, while the smallest is Oklahoma. And, the median state is
California, experiencing a 4.6 deaths per 1,000 change in predicted childhood exposure. In the 1901 cohort, the 20th percentile state is Oregon,

and the 80th percentile state is Virginia. The large decline in New Mexico is due to the national decline in smallpox mortality.
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Figure 6: Coefficient using Individuals Born in Moving Cohorts Windows

(a) HS or More (b) Yrs of Education

(c) Earning>=20k (d) Earning>=60k

Each point on the graph represents one regression with the same control variables indicated in equation 1. The
vertical axis indicates the magnitude of the coefficient of PredChildExp multiplies -1. The coefficient corresponding
to year of birth ”y” is estimated using cohorts born in ”y-20” to ”y”. The vertical line in the graph indicates year 1937,

which separates the cohorts into First Mortality Revolution cohorts and the Second Mortality Revolution cohorts.
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Figure 7: Effect by Gender and Age of Exposure

(a) Outcome Variable: Yrs of Education

(b) Outcome Variable: EMP

(c) Outcome Variable: Earnings

The graph plots coefficients and 95% confidence intervals of ρi in equation 7 from age -1 to age 6 in two year age
groups. The left column are results based on the male subsample, and the right column is based on the female

subsample.
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Figure 8: Effect by Gender and Age of Exposure, Control for Selection during Infancy

The graph plots coefficients and 95% confidence intervals of ρc−1 in equation 4. They are effects of disease exposure
between age -1 to age 0. In each cell, the left column is based on the basic specification, and the right column adds an

additional control of infant mortality.
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Figure 9: Result on Different Part of the Income Distribution

Each point is an independent regression. For example: the point corresponding to 20,000 is the coefficient in front of PredChildExp, with the
outcome variable being earnings more than 20,000.
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Figure 10: Effect by Gender and Age of Exposure, by Income Group

(a) Outcome Variable: Earning>=20k (b) Outcome Variable: Earning>=60k
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Table 1: Summary Statistics

Mean Std Min Max

Census year 1974.73 18.52 1940 2010

Year of birth 1930.15 16.14 1901 1955

Age 44.58 8.86 30 60

Fraction Male 0.49 0.50

Fraction White 0.90 0.30

Fraction Black 0.10 0.29

Fraction Married 0.80 0.10

Number of Children 1.36 0.69 0.00 9.00

Yrs of Education 11.79 1.80 0.00 21.00

Duncan Socioeconomic Index(SEI) 0.44 0.08 0.04 1.00

Annual Earnings(in 2011 dollars) 30155.47 20048.19 0.00 437400.00

Fraction Earning>=20k 0.51 0.26 0.00 1.00

Fraction Earning>=40k 0.30 0.25 0.00 1.00

Fraction Earning>=60k 0.16 0.17 0.00 1.00

ln(Annual Earnings) 10.15 0.62 2.74 13.15

Fraction Employed 0.69 0.23 0.00 1.00

PredChildExp 2.07 1.88 0.03 12.31

PredChildExp no 1918 1.97 1.76 0.03 12.31

PredChildExp >1936 0.21 0.36 0.00 2.82

Notes: Labor market outcomes are taken from the 1940-2000 Census and the 2010 American Community Survey.
I eliminate individuals born in the AK, DC, HI, SD, and ND. I collapse the data into cells based on gender,
white/black/other race, state of birth, year of birth, and year of observation, weighting each observation by its
associated person weight. Each variable has a total of 37870 cells, the cells are also formed using the same set
of individuals. The exceptions are ln(earnings) and SEI, which has 36255 and 36309 cells, respectively. The
individuals forming the cells for ln(earnings) [SEI] are a subset of individuals used for the other variables who
reported a non-zero wage [valid occupation]. Earnings are measured in 2011 dollars. The PredChildExp is
calculated from historical Volumes of Vital Statistics of the United States, and from McGuire and Coelho (2011).
The details of how to calculate this measure are discussed in the text. These disease mortality measures are
matched to individuals in the combined Census/ACS sample by their state and year of birth. The cells are by
gender and race, so no minimum and maximum values are reported.
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Table 2: Childhood Disease Exposure and the Long-run Outcomes with Different Specifications

(1) (2) (3)

Panel A: Educational Outcomes

>=12th Grade -0.021*** -0.012** -0.010**
(0.006) (0.005) (0.005)

>=4 Yr College 0.001 -0.000 -0.003
(0.004) (0.003) (0.003)

Yrs of Educ -0.255*** -0.154*** -0.118***
(0.050) (0.032) (0.027)

Panel B: Labor Market Outcomes

Employed 0.006*** -0.007* -0.006
(0.002) (0.004) (0.004)

Earnings -198.351 -567.626*** -569.090***
(189.394) (208.475) (195.872)

ln(Earnings) -0.048*** -0.024*** -0.016**
(0.012) (0.008) (0.006)

SEI -0.008*** -0.004*** -0.002*
(0.002) (0.001) (0.001)

Birth State Dummies Yes No No
Census Year Dummies Yes No No
Cohort Dummies Yes Yes No
Age Dummies Yes Yes Yes
Birth State by Census Year No Yes Yes
Interaction Terms with Race No No Yes
Interaction Terms with Gender No No Yes
Birth state cohort Trends No No No
Birth region by cohort No No No

Notes: Labor market outcomes are taken from the 1940-2000 Census and the 2010 American Community Survey. The dataset consists
of individuals who were between the ages of 30 and 60 at the time they were observed. I eliminate individuals born in DC, HI, AK,
ND or SD. I collapse the data into cells based on gender, white/black/other race, state of birth, year of birth, and year of observation,
weighting each observation by its associated person weight. Earnings are measured in 2011 dollars. The details of how to predict
the mortalities are discussed in the text. These disease mortality measures are matched to individuals in the combined Census/ACS
sample by their state and year of birth. I present the results from population weighted regressions. Standard errors are in parentheses
and are clustered by birth state. The interaction terms with race or gender represent three sets of interaction terms–with birth state,
birth cohort, and Census Year.* significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent.
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Table 3: Interpret Effects on Adult Outcome

Comparing Across Cohorts: 1901 and 1955

(1) (2) (3) (4) (5) (6)

Dependent >= 12th >=4 Yrs Yrs of Earnings ln(Earnings) SEI
Variables Grade College Educ Score

Real Differences 67.90% 24.42% 4.8 35729.97 114.01% 17.37%

Reduced-form differences 5.50% 1.65% 0.64 3112.47 8.80% 1.65%

% Effect 8%** 7% 14%*** 9%*** 8%** 10%*

Comparing Across States in 1901: 20/80th percentile comparison

(1) (2) (3) (4) (5) (6)

Dependent >= 12th >=4 Yrs Yrs of Earnings ln(Earnings) SEI
Variables Grade College Educ Score

Reduced-form differences 4%** 1% 0.51*** 2489.98*** 7.04%** 1.32%*

Notes: The reduced-form differences across cohorts multiplies the difference in predicted childhood exposure between 1901 and 1955
cohorts with the coefficients reported in table 2 column (3). The real differences between 1901 and 1955 cohort are calculated from
the census, measured at their 40s. The % effect divides the first row by the second row of numbers. It represents the contribution of
mortality revolution to the change in the outcome variable. The reduced-form differences across states with different pre-intervention
infections multiplies the 20/80th percentile difference in predicted childhood exposure with the coefficients reported in table 2 column
(3).
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Table 4: Robustness Checks: Growth, Education, Health, and Alternative Data

(1) (2) (3) (4) (5) (6) (7)
>= 12th >=4 Yrs Yrs of Emp Earnings ln(Earnings) SEI

Grade College Educ Score

Panel A: Economic Growth, 1920 to 1955 Cohorts
A.1: Basic Specification
PredChildExp -0.037*** -0.008 -0.268*** -0.013** -1554.402*** -0.036*** -0.008***

(0.009) (0.006) (0.049) (0.006) (247.268) (0.007) (0.003)

A.2: Control for State per capita Income (SI)
PredChildExp -0.034*** -0.009 -0.254*** -0.011** -1567.747*** -0.035*** -0.008***

(0.007) (0.005) (0.042) (0.005) (247.553) (0.007) (0.003)

Panel B: Education and Health Expenditure, 1915 to 1939 Cohorts
B.1: Basic Specification
PredChildExp -0.008 -0.000 -0.091*** -0.002 -516.832** -0.015** -0.001

(0.006) (0.003) (0.032) (0.005) (224.838) (0.006) (0.002)

B.2: Control for Educ Expenditure per Capita and Schools per Square Mile
PredChildExp -0.008 -0.000 -0.096*** -0.003 -545.853** -0.016*** -0.001

(0.006) (0.002) (0.033) (0.004) (210.371) (0.006) (0.002)

B.3: Control for Doctors per Capita and Hospitals per Square Mile
PredChildExp -0.010 0.001 -0.105*** -0.005 -639.485*** -0.020*** -0.000

(0.007) (0.002) (0.035) (0.003) (207.523) (0.006) (0.002)

Panel C: Other Major Causes of Death, Available States and Years
C.1: Basic Specification
PredChildExp -0.022*** -0.005 -0.179*** -0.006 -966.525*** -0.021*** -0.005***

(0.008) (0.004) (0.040) (0.006) (265.801) (0.007) (0.002)

C.2:Control for Other Major Causes of Mortality
PredChildExp -0.022*** -0.005 -0.177*** -0.006 -959.201*** -0.021*** -0.005***

(0.007) (0.003) (0.038) (0.006) (266.207) (0.007) (0.002)

Panel D: Alternative Source of Base Year Mortality
D.1: McGuire and Coelho (2011) as the Base Year Mortality
PredChildExp -0.010** -0.003 -0.117*** -0.005 -565.904*** -0.016** -0.002*

(0.005) (0.003) (0.026) (0.004) (193.882) (0.006) (0.001)

D.2: Vital Statistics as the Base Year Mortality
PredChildExp -0.007 -0.010** -0.090 0.004 -240.970 0.002 -0.003

(0.012) (0.004) (0.075) (0.007) (458.330) (0.014) (0.002)

Notes: Refer to footnote in Table 2. Each large panel includes a baseline regression that follows equation 1, which serves as a ref-
erence point for the other rows in the same panel. The rows after the baseline regression add additional variables to the regression,
including controls for education investment, health investment at the state-year of birth level. Other major diseases include diabetes,
circulatory diseases, cancer and tumors. The main columns in panel A to C(column (1)-(5)) have 27954, 17601, and 20668 obser-
vations,respectively. The regressions with ln(Earnings) [SEI score] has 26997[26988], 16802[16781], 29515[29527] observations, in
panel A, B, C, respectively.
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Table 5: Mortality and Morbidity : High Mortality Diseases

(1) (2) (3) (4) (5) (6) (7)
>= 12th >=4 Yrs Yrs of Emp Earnings ln(Earnings) SEI

Grade College Educ Score
Low Mort Diseases -0.017** -0.003 -0.132*** -0.006 -706.121** -0.014* -0.003*

(0.006) (0.004) (0.038) (0.006) (265.583) (0.008) (0.002)

High Mort Diseases 0.007 -0.004 -0.075 -0.002 -170.846 -0.023 0.000
(0.008) (0.003) (0.062) (0.006) (279.997) (0.014) (0.002)

Obs 37870 37870 37870 37870 37870 36255 36309

Notes: The high mortality diseases include: smallpox, typhoid, tuberculosis, measles, and scarlet fever.

Table 6: Selection and Scarring, Control for Selection Effect

(1) (2) (3) (4) (5) (6) (7)
>= 12th >=4 Yrs Yrs of Emp Earnings ln(Earnings) SEI

Grade College Educ Score

Panel A: Basic Specification
PredChildExp -0.029*** -0.009* -0.214*** -0.007 -1296.998*** -0.029*** -0.009***

(0.010) (0.005) (0.052) (0.006) (303.501) (0.008) (0.002)

Panel B: Scarring Effect, Control for Percent Live Birth Survived till Survey Year
PredChildExp -0.029*** -0.009* -0.214*** -0.007 -1301.680*** -0.029*** -0.009***

(0.010) (0.005) (0.052) (0.005) (303.255) (0.008) (0.002)

Selection 0.023 -0.026** 0.063 0.032** 1054.952 0.016 -0.005
(0.020) (0.010) (0.097) (0.012) (781.799) (0.023) (0.006)

Panel C: Fertility Response, Control for Cohort size at Birth

PredChildExp -0.024** -0.007 -0.187*** -0.006 -1234.841*** -0.027*** -0.007***
(0.009) (0.004) (0.046) (0.006) (309.374) (0.008) (0.002)

Cohort Size (10k) -0.003*** -0.001 -0.018*** -0.001** -41.691 -0.001 -0.001***
(0.001) (0.001) (0.005) (0.000) (32.542) (0.001) (0.000)

Obs 23343 23343 23343 23343 23343 22554 22557

Notes: Refer to footnote in Table 2. The first row panel is a baseline regression that follows equation 1, which serves as a reference
point for the other regressions. The rows after the baseline regression add additional variables to the regression, including the cohort
size, the number of people survived to the census year, and the survival rate. The survival rate is defined as the number of population
survived to the census year within each cell, divided by the number of live births for the corresponding state and year of birth.
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Table 7: Weighted predicted childhood exposure, by Age or Disease Morbidity

(1) (2) (3) (4) (5) (6) (7)
>= 12th >=4 Yrs Yrs of Emp Earnings ln(Earnings) SEI

Grade College Educ Score

Panel A: Re-weight by Age

A.1: Basic Specification
PredChildExp -0.010** -0.003 -0.117*** -0.005 -565.904*** -0.016** -0.002*

(0.005) (0.003) (0.026) (0.004) (193.882) (0.006) (0.001)

A.2: Re-weight by Age
Weight by Age -0.006* -0.003 -0.081*** -0.004 -391.249*** -0.013*** -0.002*

(0.003) (0.002) (0.019) (0.003) (129.408) (0.004) (0.001)

Panel B: Re-weight by Disease Morbidity

B.1: Basic Specification
PredChildExp -0.014** -0.005 -0.122*** -0.004 -519.775** -0.009 -0.003

(0.006) (0.004) (0.032) (0.005) (250.332) (0.007) (0.002)

B.2: Re-weight by Disability Weights (DW)
Weight by DALY -0.004*** -0.001 -0.031*** -0.002** -139.210*** -0.003** -0.001*

(0.001) (0.001) (0.006) (0.001) (41.839) (0.001) (0.000)

Notes: Refer to footnote in Table 2. Panel A.1 and B.1 use basic specifications. Panel A.2 and B.2 apply the re-weighting methods
introduced in equation 7 and equation 8

A1 Data Appendix

The outcomes data were taken from multiple United States Census Microdata samples for 1940

to 2000, and American Community Survey in 2010. These data are publicly available via the In-

tegrated Public Use Microdata Series USA project (IPUMS). These data sets include: 1940 1%

sample ; 1950 1% sample; 1960 1% sample; 1970 1% state samples and 1% metro samples48;

1980 1% Labor Market Areas, 1% urban, 1% metro and 5% state samples; 1990 1% metro,1% un-

weighted, 0.5% Labor Market Areas, and 5% sample; 2000 5%, 1%, and 1% unweighted sample;

2010 1% ACS 49.
48Note, this is not a sample only of metro areas
49According to the ”Selection of the Public-Use-Microdata Samples” section of multiple years of Sample Design

page on IPUMS, the procedure for selecting the microdata samples was designed to, ”minimize the likelihood that any
one case would be selected into more than one public-use microdata sample, and the overlap among the samples may
be considered negligible.” So combining the samples should not be problematic. However, to properly combine the
data, one has to adjust the weights in each year according to the amount of samples used in each year.
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We took the following outcome and control variables from the IPUMS:

The basic variables include: individuals‘ race, gender, year of birth, state of birth, and current

state of residence. Using these variables, I restrict the analysis to individuals born in the U.S. be-

tween 1901 and 1955. The individuals must be living in the U.S. at the time of the interview, and

be between 30 and 60 years old. Individuals born in North/South Dakota, Alaska, Hawaii and the

District of Columbia are eliminated due to lack of disease mortality data. I drop all individuals for

whom information on birth year, birth state, gender, or race is allocated. I also drop all the indi-

viduals for whom education (EDUCD in IPUMS), wage (INCWAGE in IPUMS) or employment

(EMPSTAT in IPUMS) are imputed.

The individual data are then collapsed into cells defined by gender, race, cohort, state of birth,

and year of observation. Then I calculate cell-level means of each outcome variable and control

variable taking into account the adjusted personal weights. The regressions are later weighted by

the total number of individuals represented by the observations in the cell.

Specific sources and construction of each of our outcome variables is as follows. Inside the

parenthesis are the corresponding variable names :

>=12th grade (EDUCD) Attended 12th grade = 1 for those individuals who completed grade 12

and above. It does not imply obtaining a high school degree or equivalent. Degree information are

not available throughout the sample period.

>=4 Years of College (EDUCD) Attended 4 years of college = 1 for those individuals who com-

pleted 4 years of college. It also does not imply obtaining a bachelor’s degree.

Years of education (EDUCD) Years of education is approximated using a method introduced by

David Jaeger (Jaeger, 1997).

Earnings (INCWAGE) INCWAGE reports each respondent’s total pre-tax wage and salary income

- that is, money received as an employee - for the previous year. This measure is inflated to 2011

dollars and then taken logarithm. We calculate earnings in categories, earnings dollars, and logged

earnings using this raw variable. The former two do not eliminate those with zero earnings.

Employed (EMPSTAT) Individual employment = 1 if the individual report to be employment.
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Marriage Status (MARST) Married=1 if the individual report to be married. Cohabitation status

is not surveyed in the censuses.

Number of Children (NCHILD) The number of own children (of any age or marital status) residing

with each individual. This variable is capped at 9.

Duncan Socioeconomic Index (SEI) The SEI is a measure of occupational status based upon the

income level and educational attainment associated with each occupation in 1950.

All the variables are created based on the same number of individuals, except for SEI. Because

SEI have a higher chance of being missing. When a person failed to report their occupation, the

SEI variable is set to be missing. This leads to a higher fraction of missing values in this variable

than all of the other outcome variables. I use the subset of people in the full sample that reported a

valid SEI for this regression.
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A2 Model of Scarring and Selection Effect

The model introduced in this section explains the dynamics of the scarring and selection effect

on population under different initial health endowments. This model is an extension of the model

introduced in Almond (2006) and Bozzoli, Deaton, and Quintana-Domeque (2009).

Let hi,t denote the physiological characteristics, or health, of child i at the beginning of year t.

Infant i is born with physiological characteristics hi,0. Child i dies in period t if

hi,t − vt ≤ z,

where vt is the shock size and z is the mortality threshold. Let Ft denote the distribution of health

at the beginning of year t. The mortality at year t is

mt = Ft(z + vt).

After the shock, the health of the survivors recovers by (1− θ)vt, where θ ∈ [0, 1]. In other words,

the permanent effect of the shock on the survivors’ health is θvt. The average health at the end of

year t or the beginning of year t+ 1 is

h̄t+1 =

∫∞
z+vt

hdFt(h)

1− Ft(z + vt)
− θvt. (10)

The partial derivative of h̄t+1 over vt is

∂h̄t+1

∂vt
=
−(z + vt)ft(z + vt)

1− Ft(z + vt)
−

∫∞
z+vt

hdFt(h)

(1− Ft(z + vt))2
(−ft(z + vt))− θ

=
ft(z + vt)

1− Ft(z + vt)

(
−z − vt +

∫∞
z+vt

hdFt(h)

(1− Ft(z + vt)

)
− θ

=
ft(z + vt)

1− Ft(z + vt)

(
−z − vt + h̄t + θvt

)
− θ.

Given that the shock size is unobservable, it is useful to rewrite the average health formula in (10)
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in terms of mortality

h̄t+1 =

∫∞
F−1(mt)

hdFt(h)

1−mt

− θ(F−1(mt)− z). (11)

Let Let Φµ,σ(·) and φµ,σ(·) denote the CDF and PDF of a normal distribution with mean µ and

standard deviation σ. When Ft = Φµ,σ,

h̄t+1 =

∫∞
Φ−1
µ,σ(mt)

hφµ,σdh

1−mt

− θ(Φ−1
µ,σ(mt)− z).

=

∫∞
Φ−1
µ,σ(mt)

hφµ,σdh

1−mt

− θ(Φ−1
0,σ(mt) + µ− z)

=

∫∞
Φ−1

0,σ(mt)
hφ0,σdh

1−mt

+ µ− θ(Φ−1
0,σ(mt) + µ− z)

= σ

∫∞
Φ−1

0,1(mt)
hφ0,1dh

1−mt

+ µ− θ(σΦ−1
0,1(mt) + µ− z)

= σ

∫∞
Φ−1

0,1(mt)
hφ0,1dh

1−mt

+ µ− θ(σΦ−1
0,1(mt) + µ− z)

=
σ

1−mt

φ0,1(Φ−1
0,1(mt)) + µ− θ(σΦ−1

0,1(mt) + µ− z), (12)

where

mt = Φ0,1

(
z + vt − µ

σ

)
. (13)

Substituting the mortality formula (13) in (12),

h̄t+1 =
σ

1−mt

φ0,1(Φ−1
0,1(mt)) + µ− θ(σΦ−1

0,1(mt) + µ− z)

=
σ

1− Φ0,1

(
z+vt−µ

σ

)φ0,1

(
z + vt − µ

σ

)
+ µ− θ((z + vt − µ) + µ− z)

=
σ

1− Φ0,1

(
z+vt−µ

σ

)φ0,1

(
z + vt − µ

σ

)
+ µ− θvt

We are interested in the effect of µ on h̄t+1 − h̄t. An initial distribution F0 with a high µ can

be interpreted as the health or income distribution of the sub-population of infants born in high
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income families. Similarly, F0 with a low µ can be interpreted as the health or income distribution

of the sub-population of infants born in low income families. The relevant partial derivative is

∂h̄t+1

∂µ
= 1 +

−1

σ
σ

[(
φ0,1

(
z+vt−µ

σ

)
φ0,1

(
z+vt−µ

σ

)(
1− Φ0,1

(
z+vt−µ

σ

))2

)
+
−
(
z+vt−µ

σ

)
φ0,1

(
z+vt−µ

σ

)
1− Φ0,1

(
z+vt−µ

σ

) ]

= 1−

[
φ2

0,1

(
z+vt−µ

σ

)(
1− Φ0,1

(
z+vt−µ

σ

))2 +
−
(
z+vt−µ

σ

)
φ0,1

(
z+vt−µ

σ

)
1− Φ0,1

(
z+vt−µ

σ

) ]
(14)

Net we prove that the second term in (14) is between 0 and 1, i.e.,

0 < g(x) :=
φ2

0,1 (x)

(1− Φ0,1 (x))2 +
−xφ0,1 (x)

1− Φ0,1 (x)
< 1, ∀x.

The first step is to show that it is monotonically increasing in x.

∂g(x)

∂x
=

2φ2
0,1 (x) (−x) (1− Φ0,1 (x))2 + φ3

0,1 (x) 2 (1− Φ0,1 (x))

(1− Φ0,1 (x))4

−
φ0,1(x)(1− x2)(1− Φ0,1(x)) + φ2

0,1(x)x

(1− Φ0,1 (x))2

= −
φ0,1(x)(1− x2)(1− Φ0,1(x)) + 3φ2

0,1(x)x

(1− Φ0,1 (x))2 +
2φ3

0,1 (x)

(1− Φ0,1 (x))3

= φ0,1 (x)
x2(1− Φ0,1(x))2 − 3φ0,1(x)x(1− Φ0,1 (x)) + 2φ2

0,1 − (1− Φ0,1 (x))2

(1− Φ0,1 (x))3 ,

which is positive for x ≤ −1. For x > −1, we have

∂g(x)

∂x
= φ0,1 (x)

[2φ0,1 − x(1− Φ0,1 (x))] [φ0,1 (x)− x(1− Φ0,1 (x))]− (1− Φ0,1 (x))2

(1− Φ0,1 (x))3

= φ0,1 (x)
[2φ0,1 − x(1− Φ0,1 (x))] [φ0,1 (x)− x(1− Φ0,1 (x))]− (1− Φ0,1 (x))2

(1− Φ0,1 (x))3

= φ0,1 (x)
φ0,1 (x) [φ0,1 (x)− x(1− Φ0,1 (x))] + [φ0,1 − x(1− Φ0,1 (x))]2 − (1− Φ0,1 (x))2

(1− Φ0,1 (x))3

= φ0,1 (x)
φ0,1 (x) [φ0,1 (x)− x(1− Φ0,1 (x))] + [φ0,1 − x(1− Φ0,1 (x))]2 − (1− Φ0,1 (x))2

(1− Φ0,1 (x))3 (15)
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To prove that (15) is positive for x > −1, it is sufficient to prove that

φ0,1 − x(1− Φ0,1 (x)) > 1− Φ0,1 (x) .

We have

∂(φ0,1 − x(1− Φ0,1 (x)))

∂x
= −xφ0,1 (x)− (1− Φ0,1 (x)) + xφ0,1 (x) = −(1− Φ0,1 (x)),

∂(1− Φ0,1 (x))

∂x
= −φ0,1 (x) . (16)

Thus both φ0,1 − x(1 − Φ0,1 (x))) and 1 − Φ0,1 (x) are decreasing in x. For x > 1, φ0,1 (x) ≥

x(1−Φ0,1 (x)) ≥ (1−Φ0,1 (x)), thus 1−Φ0,1 (x) decreases faster than φ0,1−x(1−Φ0,1 (x)). For

0 < x < 1, φ0,1 (x) > (1− Φ0,1 (x)) because φ0,1(1) > (1− Φ0,1(0)). The second step is to show

that

lim
x→∞

g(x) = 1,

for which we use the L’hospital rule

lim
x→∞

g(x) = lim
x→∞

φ2
0,1 (x)− xφ0,1 (x) (1− Φ0,1 (x))

(1− Φ0,1 (x))2

= lim
x→∞

−2xφ2
0,1 (x) + xφ2

0,1 (x)− (1− Φ0,1 (x)) (φ0,1 (x)− x2φ0,1 (x))

−2 (1− Φ0,1 (x))φ0,1 (x)

= lim
x→∞

−2xφ0,1 (x) + xφ0,1 (x)− (1− Φ0,1 (x)) (1− x2)

−2 (1− Φ0,1 (x))

=
1

2
+ lim

x→∞

−xφ0,1 (x) + (1− Φ0,1 (x))x2

−2 (1− Φ0,1 (x))

=
1

2
+ lim

x→∞

−φ0,1 (x) (1− x2)− φ0,1 (x)x2 − (Φ0,1 (x)− 1) 2x

2φ0,1 (x)

=
1

2
− 1

2
+ lim

x→∞

− (Φ0,1 (x)− 1) 2x

2φ0,1 (x)

= 1.
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Thus we have g(x) ∈ [0, 1] and

0 ≤ ∂h̄t+1

∂µ
≤ 1,

which can be interpreted as that children from high income families have higher income than those

from low income families after the health shock, but not as much as before the health shock.
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A3 Result Appendix

A3.1 Gender, Race, and Region

We also examine the effects by gender and/or by race. Table A1 shows the result by gender and

race. The education attainment effects on blacks are larger than whites, but their income effects are

similar. The story becomes even clearer in table A2, which shows that, on average, children born in

southern and non-southern states enjoyed comparable productivity gains from a unit of mortality

decline. But the black population in southern states do not benefit as much from the Mortality

Revolution compared with the blacks outside of southern states. A similar result was found by

Bhalotra and Venkataramani (2011)50. They thoroughly examine the historical background faced

by the blacks in slavery states and find that the blacks born outside of the South enjoyed similar

or larger gains from sulfa drugs access than the whites, whereas the Southern blacks had limited

opportunity to translate their physical gains into labor market gains. The authors argued that the

likely explanation is the difficulty for blacks to realize human capital improvements in the pre-Civil

Right era.

Figure A2 looks at the results in figure 6 by gender. The returns on mortality decline trend simi-

larly between males and females during the First Mortality Revolution. During the Second Mortal-

ity Revolution, the return for both genders grew, but the return on males climbs faster for almost all

outcome variables. This finding is common in the early childhood shocks literature (Almond, 2006;

Bhalotra and Venkataramani, 2011; Stein, Barnhart, Hickey, Ramakrishnan, Schroeder, and Mar-

torell, 2003; Crimmins and Finch, 2006; Lindeboom, Portrait, and van den Berg, 2010; Banerjee,

Duflo, Postei-Vinay, and Watts, 2010; Almond and Mazumder, 2013). The biomedical literature

also suggests males are more susceptible to environment shocks, particularly infectious diseases,

compared with females (Trivers and Willard, 1973; Waldron, 1983; Lucas, 2010). Therefore the

effective drugs in the Second Mortality Revolution helped the boys more.

50Diffusion of any medical innovation was likely slower among blacks, due to the inferior medical care available to
them under segregation (Douglas Almond, Kenneth Y. Chay, and Michael Greenstone 2006, Loudon 1992). But the
coefficient reflects the response of blacks to an average state-level decline in mortality, which might not be the perfect
measure for the mortality decline among blacks.

60



A3.2 Including State Time Trends and Region by Cohort Interaction Terms

Table A4 add additional birth state-specific cohort trends and birth region by cohort dummies to the

regression. The effect of adding the state-specific cohort trends reduced the size of the coefficients

by approximately half, and earnings related variables become insignificantly different from zero.

However, one must consider the trade-off of adding birth state-specific cohort trends. It helps to

control for the state-specific trend in economic growth. However, because the mortality is also

declining linearly (Figure 3), the birth state-specific cohort trends may lead to underestimation of

the effect of mortality decline. I believe birth state by census year dummies can sufficiently control

for the changes in average income across time, and it is better not to include birth state-specific

cohort trends.

The table also include one way of controlling for mean reversion. The result is within one

standard deviation comparing to the baseline results. But the significance of most of the coefficients

were lost.

A3.3 Urban Penalty

Prior to 1940, the urban mortality rates were much higher than rural rates because infectious dis-

eases spread more rapidly in highly populated places. This phenomenon is also called the “Urban

Penalty” (Haines, 2001; Cutler and Miller, 2005). Table A5 studies the differences in outcomes of

mortality reduction in urban versus rural areas. The table introduce %urban population by birth

state and cohort, and its interaction term with the PredChildExp into the basic specification in

equation 1. The coefficient on the interaction term captures the differences between 100% urban

population versus none. Results show that urban areas benefit more from mortality decline. For

a 1-in-1000 childhood mortality reduction, 1.6 percentage point more children finish 12th grade,

and 1.9 percentage point more finish four years of college. The workers’ socioeconomic standing

also improves. I performed similar analysis with the percent of manufacturing population and farm

land in acres. The results are similar to what we see here with the percent of urban population.
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A4 Appendix Tables and Graphs

Figure A1: Case-Fatality Ratio for a Selection of Diseases
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Figure A2: Coefficient using Individuals Born in Moving Cohorts Windows, by Gender

(a) HS or More (b) Yrs of Education

(c) Earning>=20k (d) Earning>=60k

Each point on the graph represents one regression with the same control variables indicated in equation 1. The
vertical axis indicates the magnitude of the coefficient of PredChildExp. The coefficient corresponding to year of

birth ”y” is estimated using cohorts born in ”y-20” to ”y”. The vertical line in the graph indicates year 1937, which
separates the cohorts into First Mortality Revolution cohorts and the Second Mortality Revolution cohorts.
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Figure A3: Coefficient using Individuals Born in Moving Cohorts Windows, Remove 1918
Cohort

(a) HS or More (b) Yrs of Education

(c) Earning>=20k (d) Earning>=60k

Each point on the graph represents one regression with the same control variables indicated in equation 1. The
vertical axis indicates the magnitude of the coefficient of PredChildExp. The coefficient corresponding to year of

birth ”y” is estimated using cohorts born between ”y-20” and ”y”, skipping over the 1918 cohort. I do not include the
1918 cohort because of its unusually high mortality rate due to the Spanish Flu Pandemic. The vertical line in the

graph indicates year 1937, which separates the cohorts into First Mortality Revolution cohorts and the Second
Mortality Revolution cohorts.
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Table A1: Childhood Disease Exposure and the Long-run Outcomes by Race and Gender

(1) (2) (3) (4) (5) (6) (7) (8)
>= 12th >=4 Yrs Yrs of EMP Earning Earning Earning SEI

Grade College Educ >= 20k >= 40k >= 60k Score
Panel A: White Female Subsample
PredChildExp -0.011** -0.004 -0.109*** -0.005 -0.003 -0.001* -0.001*** -0.004*

(0.006) (0.003) (0.028) (0.006) (0.006) (0.001) (0.000) (0.002)

Obs 7958 7958 7958 7958 7958 7958 7958 7905
R-Squared 0.97 0.95 0.97 0.95 0.96 0.97 0.96 0.87

Panel B: White Male Subsample
PredChildExp -0.005 0.000 -0.073** -0.004 0.000 0.000 -0.004* 0.000

(0.005) (0.003) (0.032) (0.003) (0.005) (0.003) (0.002) (0.001)

Obs 7965 7965 7965 7965 7965 7965 7965 7964
R-Squared 0.97 0.95 0.98 0.91 0.93 0.98 0.97 0.91

Panel C: Black Female Subsample
PredChildExp -0.018** -0.006*** -0.199*** -0.010* -0.005 -0.004** -0.002** -0.005*

(0.008) (0.001) (0.060) (0.006) (0.004) (0.002) (0.001) (0.003)

Obs 6124 6124 6124 6124 6124 6124 6124 5718
R-Squared 0.95 0.75 0.96 0.64 0.92 0.91 0.82 0.90

Panel D: Black Male Subsample
PredChildExp -0.020*** -0.002 -0.275*** -0.009** -0.004 -0.006 -0.003 -0.004**

(0.007) (0.002) (0.062) (0.003) (0.006) (0.005) (0.002) (0.002)

Obs 6021 6021 6021 6021 6021 6021 6021 5919
R-Squared 0.95 0.70 0.95 0.75 0.86 0.92 0.86 0.85

Panel E: Other Race Female Subsample
PredChildExp -0.022 -0.003 -0.116 -0.023 -0.020 -0.005 -0.005 -0.006

(0.020) (0.012) (0.161) (0.019) (0.014) (0.005) (0.004) (0.014)

Obs 4905 4905 4905 4905 4905 4905 4905 4112
R-Squared 0.69 0.52 0.75 0.49 0.52 0.52 0.46 0.46

Panel F: Other Race Male Subsample
PredChildExp -0.022 -0.005 -0.123 -0.004 0.001 -0.023** -0.020* -0.007

(0.014) (0.013) (0.152) (0.021) (0.017) (0.011) (0.011) (0.010)

Obs 4897 4897 4897 4897 4897 4897 4897 4691
R-Squared 0.68 0.51 0.73 0.48 0.52 0.59 0.56 0.51
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Table A2: Effects by Race and Region of Birth

(1) (2) (3) (4) (5) (6) (7) (8)
>= 12th >=4 Yrs Yrs of EMP Earning Earning Earning SEI

Grade College Educ >= 20k >= 40k >= 60k Score
Panel A: Southern Birth State Subsample
PredChildExp -0.006 -0.003 -0.068** -0.004** -0.005*** -0.003** -0.002* -0.001

(0.005) (0.002) (0.026) (0.002) (0.002) (0.001) (0.001) (0.001)

Obs 13970 13970 13970 13970 13970 13970 13970 13581
R-Squared 0.97 0.90 0.97 0.94 0.96 0.95 0.93 0.93

Panel B:Nonsouth Birth State Subsample
PredChildExp -0.005 -0.010*** -0.078** 0.012*** 0.016*** -0.001 -0.008*** -0.005**

(0.006) (0.004) (0.035) (0.003) (0.003) (0.002) (0.002) (0.002)

Obs 23900 23900 23900 23900 23900 23900 23900 22728
R-Squared 0.96 0.93 0.96 0.96 0.97 0.98 0.96 0.86

Panel C: Southern Birth State Black Subsample
PredChildExp -0.004 -0.002 -0.045 -0.002 -0.005* -0.001 -0.001 -0.000

(0.005) (0.003) (0.026) (0.001) (0.002) (0.001) (0.001) (0.002)

Obs 5439 5439 5439 5439 5439 5439 5439 5430
R-Squared 0.97 0.94 0.97 0.98 0.98 0.98 0.97 0.90

Panel D:Nonsouth Birth State Black Subsample
PredChildExp -0.005 -0.009** -0.071* 0.014*** 0.019*** 0.000 -0.008*** -0.004**

(0.007) (0.004) (0.035) (0.004) (0.004) (0.002) (0.002) (0.002)

Obs 10484 10484 10484 10484 10484 10484 10484 10439
R-Squared 0.97 0.96 0.97 0.98 0.98 0.99 0.98 0.89
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Table A3: Selection and Scarring, Control for Selection in to the Labor Force

(1) (2) (3) (4) (5)
Earnings ln(Earnings) Earning Earning Earning

>= 20k >= 40k >= 60k

Panel A: Basic Specification

PredChildExp -565.904*** -0.016** -0.003 -0.004*** -0.006***
(193.882) (0.006) (0.005) (0.001) (0.001)

Panel B: Control for Fraction in the Labor Force

PredChildExp -395.253*** -0.012*** 0.000 -0.003** -0.005***
(97.829) (0.004) (0.003) (0.001) (0.002)

in Labor force 33865.703*** 0.794*** 0.542*** 0.341*** 0.186***
(1165.828) (0.040) (0.015) (0.022) (0.013)

Obs 37870 36255 37870 37870 37870

Panel C: Control for Fraction Employed

PredChildExp -397.465*** -0.012*** 0.000 -0.003** -0.005***
(97.461) (0.004) (0.003) (0.001) (0.002)

Employed 33580.343*** 0.822*** 0.527*** 0.353*** 0.195***
(1132.536) (0.044) (0.015) (0.020) (0.012)

Obs 37870 36255 37870 37870 37870

Notes: Refer to footnote in Table 2. The Fraction in the Labor Force [Employed] is defined as the number of population in the labor
force [employed] in the census year within each cell, divided by the number of live births for the corresponding state and year of birth.
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Table A4: Control for State Time Trends, Region by Cohort Interactions, and Mean Reversion

(1) (2) (3) (4) (5) (6) (7)
>= 12th >=4 Yrs Yrs of Emp Earnings ln(Earnings) SEI

Grade College Educ Score
Panel A: Basic Specification

PredChildExp -0.010** -0.003 -0.118*** -0.006 -569.090*** -0.016** -0.002*
(0.005) (0.003) (0.027) (0.004) (195.872) (0.006) (0.001)

Obs 37228 37228 37228 37228 37228 35657 35712

Panel B: Control for Mean Reversion using 1899 Farm Labor Wage

PredChildExp -0.005 -0.004 -0.079*** -0.001 -288.308* -0.008 -0.002
(0.004) (0.003) (0.022) (0.003) (163.277) (0.005) (0.001)

Obs 37228 37228 37228 37228 37228 35657 35712

Panel C: Birth state cohort Trends

PredChildExp -0.011** 0.001 -0.056*** -0.000 -6.421 -0.002 -0.001
(0.005) (0.002) (0.020) (0.002) (82.057) (0.005) (0.002)

Obs 37228 37228 37228 37228 37228 35657 35712

Panel D: Birth region by cohort

PredChildExp -0.005 -0.000 -0.050** -0.000 -12.388 -0.005 -0.002
(0.004) (0.002) (0.022) (0.002) (91.113) (0.005) (0.001)

Obs 37228 37228 37228 37228 37228 35657 35712

Notes: The regressions in panel B control for the mean reversion. The additional control variable is the initial state-level farm labor
wage in 1899 and multiplied with the national trend of infectious diseases. The state unskilled farm worker wages in 1899 from
Lebergott (1964), and is made available from Bleakley, 2010.
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Table A5: The Urban Penalty and Childhood Disease Exposure

(1) (2) (3) (4) (5) (6) (7)
>= 12th >=4 Yrs Yrs of Emp Earnings ln(Earnings) SEI

Grade College Educ Score
Panel A: 1915 to 1939 Cohorts Basic Specification
PredChildExp -0.008 -0.000 -0.091*** -0.002 -516.832** -0.015** -0.001

(0.006) (0.003) (0.032) (0.005) (224.838) (0.006) (0.002)

Panel B: 1915 to 1939 Cohorts including interaction term with %Urban Population
PredChildExp -0.006 0.007*** -0.099** -0.014*** -949.187*** -0.029*** 0.003**

(0.008) (0.002) (0.044) (0.002) (172.864) (0.006) (0.001)

PredChildExp*%Urban -0.016* -0.019*** -0.028 0.027*** 925.853*** 0.028*** -0.012***
(0.008) (0.003) (0.041) (0.005) (231.779) (0.006) (0.002)
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