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1 Introduction

Many time series exhibit non-linear dynamics that can be characterized

by regime changes in persistence and volatility. Recently many papers used

Threshold Autoregressive (TAR) models in economic and financial time se-

ries to model the dynamics of short-term interest rates, real exchange rates,

unemployment rate, stock prices, production, and inventories.

In spite of popularity of TAR models the problem of efficient estimation

of thresholds is still unsolved. The likelihood function is discontinuous in

the thresholds and has multiple peaks in case of more than two regimes.

There is enormous literature using classical methods where a threshold is

estimated via grid search or residual scatter plots (see e.g. Tong and Lim

(1980), Tong (1983, 1990), Tsay (1989, 1998), Hansen (1997), Lanne and

Saikkonen (2002), etc.). We face a problem in estimating simultaneously

multiple thresholds by these methods since accurate estimation with many

dimensions of grid search takes a long time. To solve this problem, e.g. Gon-

zalo and Pitarakis (2002) used sequential estimation on a grid of points and

found that their method works well only when regimes samples are equally

spaced. The Bayesian analogue of a grid search is a Griddy Gibbs sam-

pler within MCMC and it was done e.g. in Phann, Schotman and Tscherig

(1996). Other Bayesian methods were suggested for a two-regime simple

autoregressive specification with one threshold by Geweke and Terui (1993)

using Monte Carlo integration for the case of noninformative priors. This

method requires numerical multiple integration. Chen and Lee (1995) used

a Metropolis algorithm within a Gibbs sampler and noted that their pro-

cedure avoids sophisticated integration or use of plots, which may result

in imprecise values of estimated threshold parameter. However, they admit

that the MCMC algorithm that they suggested is restrictive to a simple two-

regime TAR model and much remains to be done for a general TAR model

with multiple regimes. Koop and Potter (1999) extended Monte Carlo in-
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tegration method suggested in Geweke and Terui (1993) for a three regime

autoregressive model with informative priors. Forbes, Kalb and Kofman

(1999) extended numerical integration for multiple thresholds using Rao-

Blackwellized estimates of marginal posterior densities. In this paper we

propose a Metropolis-Hastings algorithm with efficient jumps and estimate

multiple thresholds jointly in a general class of ARMA-GARCH models.

Our model can be extended to other models with many parameters. This

algorithm is more efficient than existing methods; it avoids numerical inte-

gration or grid search and achieves convergence in reasonable computational

time.

In this paper we analyze behavior of the U.S. short-term interest rates

using a threshold model. The short-term interest rate is a key variable

in many finance models, including term structure models and models that

use risk-free rate as an input. Switches in regimes for short-term inter-

est rates were studied among others by Hamilton (1988), Cai (1994), Gray

(1996), etc. using Markov switching model, Lanne and Saikkonen (2002)

and Phann, Schotman and Tscherig (1996) used threshold models. Hamil-

ton (1988) analyzed the term structure of interest rates in response to FED’s

change in monetary policy in October 1979, which resulted in a period of a

high level and high volatility of interest rates. He suggested to use a two-

regime Markov-switching model instead of a constant coefficient autoregres-

sive model for short rates since the former provided a better description

of the univariate process for the short rate and was more consistent with

historical correlation between long and short rates. Phann, Schotman and

Tscherig (1996) (PST) modeled the dynamics of short-term interest rates

as an autoregressive threshold model with autoregressive parameters and

volatility depending on the level of interest rates. They noted that the

traditional linear models of interest rate dynamics, emphasized in Chan,

Karolyi, Longstaff and Saunders (CKLS) (1992), are not able to explain the

empirical regularity that long term rates are not as volatile as short-term
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rates. The general stochastic differential equation used by CKLS to model

the adjustment process of short-term interest rate can be represented by

equation (1),

dr(t) = (µ+ βr(t))dt+ σr(t)λdW (1)

where r(t) is the interest rate level at time t, t is time, W is a standard

Brownian motion and µ, β, σ, and λ are parameters.

In this model µ + βr(t) is the drift and σ2r(t)2λ is the variance of un-

expected interest rate changes. The β is interpreted as the mean reversion

parameter-it measures the speed of mean reversion in rate levels; σ2 as the

volatility parameter and λ as the elasticity of volatility with respect to the

level of interest rates. At higher λs, the volatility is more sensitive to inter-

est rates. Since the CKLS model is inadequate in explaining the empirical

regularity that long term rates are not as volatile as short-term rates PST

considered a non-linear framework and obtained results that are consistent

with this empirical fact.

This paper shows how a Metropolis-Hastings algorithm with efficient

jump can be applied to the estimation of multiple threshold time series

models. The algorithm that we suggest is more efficient than existing meth-

ods for threshold models. The model is then estimated for the US 3 month

Treasury bill rate. Our first result is that the interest rates are persistent in a

lower regime and exhibit weak mean reversion in the upper regime. Second,

volatility is more persistent in the lower regime than in the upper regime,

while the level of volatility is higher when interest rates are high. Third,

allowing for both GARCH effect and level effect (dependence of volatility on

the level of interest rate) in TAR model results in smaller elasticity λ esti-

mates, significant GARCH effects, and smaller standard errors of threshold

parameter estimates. These results have important implications for measur-

ing risk-free rate and for the term structure of interest rates. The empirical

analysis to be presented corroborates earlier results obtained in Gray (1996)

using Markov-switching model and Phann, Schotman and Tscherig (1996)
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using TAR model. However, our specification is more general, since we al-

low multiple regimes and thresholds, ARMA, GARCH, and all parameters

are flexible to change with regime. The model we suggest generalizes other

models available in the literature so that CKLS, GARCH, ARMA, and mul-

tiple threshold models for interest rates are nested in our model as special

cases.

For model selection we used several techniques such as marginal like-

lihood and Bayesian information criteria, as well as estimation with and

without truncation restrictions imposed on thresholds. For testing non-

linearity we suggest to use posterior distribution of difference in parameters

in different regimes.

The plan of the paper is as follows. Section 2 presents our non-linear

framework for multiple regime modelling and Metropolis-Hastings algorithm.

Section 3 presents empirical estimates of the model applied to the U.S. T-bill

rate. Section 4 concludes.

2 The Threshold Model

Our generalized threshold model nests the threshold autoregressive model

(TAR or SETAR), ARMA, GARCH, and CKLS models. Volatility of inter-

est rates is assumed to have both level and GARCH effects, following earlier

interest rate models suggested by Brenner (1996) and Koedijk (1997), who

found that if GARCH is omitted it results in a biased estimate of level effect.

In what follows, we will let yt represent the level of interest rate at time t

and define new parameters, for different regimes, extending equation (1) to

the following threshold model.
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∆yt = γj1 + γj2yt−1 + |yt−1|
λjut (2)

ut =
Θj(B)

Φj(B)
εt (3)

εt ∼ N(0, σ2t ) (4)

σ2t = αj0 +
a
∑

i=1

αji ε
2
t−i +

s
∑

i=1

βji σ
2
t−i (5)

αj0 > 0, αji ≥ 0, (j = 1, · · · , a), βji ≥ 0, (i = 1, · · · , s)

where yt belongs to regime j given by























j = 1 yt−d < r1

j = 2 r1 ≤ yt−d < r2

... ...

j = k + 1 yt−d ≥ rk

(6)

We assume in the model above that there are k thresholds r1, r2, ..., rk

and k + 1 regimes for yt.

Θ(B) and Φ(B) are q-th order and p-th order polynomials in the back-

ward shift operator B respectively:

Θ(B) = 1 + θ1B + · · ·+ θqB
q and Φ(B) = 1− φ1B − · · · − φpBp.

Each parameter in this model {γj , φj , θj , αj , βj , λj} takes k + 1 values

depending on the regime j where yt−d belongs. The delay parameter d will

be selected together with the orders (p, q, a, s) of ARMA(p, q)-GARCH(a, s)

process in each regime to fit the best model according to a Bayesian infor-

mation criterion based on estimated marginal likelihood.

Let the prior pdf of the parameters γ
′
, φ
′
, θ
′
, α
′
and β

′
be given by
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π(γ, φ, θ, α, β) =
k+1
∏

i=1

N(γ0i,Σγi)×N(φ0i,Σφi)×N(θ0i,Σθi)×N(α0i,Σαi)

×N(β0i,Σβi)× I
(

0 ≤ λ(i) ≤ λup
)

× I
(

ri ∈ [r
(i)

low
, r

(i)
up]
)

We assume a uniform prior for parameters λ and r with necessary con-

straints imposed on these parameters: (i) λ ≥ 0 and less than certain upper

bound1; (ii) each ri is constrained so that minimum δ% of observations are

within each regime. We need sufficient sample size in each regime in order

to estimate all parameters of the model. We use δ = 5% of total number of

observations as a minimum sample size in each regime.2

Given threshold values r1, ..., rk the samples {yt} and {xt} are separated
into regimes given by (6). We will denote yjt = yt and xjt = xt if {yt, xt}
belong to regime j.

Let us rescale variables yjt and x
j
t by the level heteroscedasticity compo-

nent |yt−1|λ
j
, (j = 1, ..., k + 1):

ỹjt = yjt /|yt−1|λ
j

(7)

x̃jt = xjt/|yt−1|λ
j

The posterior distribution is given by

p(γ, φ, θ, α, β|data) = π(γ, φ, θ, α, β)
k+1
∏

j=1

∏

t∈Tj

1

σt|yt−1|λj
φ

(

ỹjt − g(Zt)
σt

)

(8)

1which in practice is never greater than 1.5. Some models make stationarity of variance
restriction λ < 1. However, most studies that used CKLS model (1) without GARCH
effect found that λ is between 1 and 1.5 for US T-bills

2δ depends on number of observations, if the sample size is small higher δ is recom-
mended. For example, Koop and Potter (1999) used 15% as a minimum sample size in
each regime.
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where for every t ∈ Tj = {t : rj−1 ≤ yt−d ≤ rj}

et = ỹjt − x̃
j
tγ
j

εt = ỹjt − g(Zt)

g(Zt) = x̃tγ
j −

p
∑

i=1

φjiet−i −
q
∑

i=1

θji εt−i

σ2t = αj0 +
r
∑

i=1

αji ε
2
t−i +

s
∑

i=1

βji σ
2
t−i

Phann, Schotman and Tschernig (1996, PST) considered a two regime

threshold autoregressive model with CKLS heteroscedasticity for the U.S. 3

month T-bill rates. Their model is a special case of our model if parameters

of GARCH and ARMA are set to zero and level effect λ is not allowed to

change with regime. We also allow possibility of more than two regimes

in our model. In section 3 we show that a GARCH component is impor-

tant since as we found the interest rate data shows strong conditional het-

eroscedasticity. Moreover, the persistence of volatility changes with regime

exhibiting higher persistence in a lower regime. We allow more flexibility for

the model error (ARMA(p, q)-GARCH(a, s) rather than white noise) where

the orders p, q, a, s in each regime3 are selected using a Bayesian information

criterion. The delay parameter d and the threshold variable are also part

of the model selection. PST use the threshold variable yt−1 with d = 1.

Tsay (1998) suggests to use a stationary zt−d variable as a threshold. It

could be modelled e.g. as ∆yt−d as is suggested in Hansen (1997). Another

choice of a threshold variable could be a moving average Σdi=0|yt−i|/(d+ 1)

used in Tsay (1998) and in Frances and Van Dyck (2000). We have chosen

the threshold variable as yt−d, which makes intuitive sense for interest rate

models, as regimes are separated by high and low interest rates. In the

3Orders can be different in different regimes, so we have choice of p, q, a, s in each
regime separately
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next section we explain an efficient Metropolis-Hastings algorithm for the

threshold model that works much faster compared with estimation on a grid

of points, as is suggested in PST and other literature.

2.1 Estimation of the Threshold Model

The way we estimate threshold parameters r = (r1, ..., rk) is different

from the existing methods in the literature. We employ an efficient Metropo-

lis jumping rule (see e.g. Gelman, Carlin and Rubin (2004)), which solves

the problem of efficient simultaneous estimation of multiple thresholds.

We describe the algorithm for the case of two and three regimes. For

higher number of regimes the estimation procedure is similar. We will esti-

mate parameters in blocks: (i) regression parameters, γ; (ii) AR coefficients

φ, (iii) MA coefficients, θ; (iv) ARCH coefficients, α, (v) GARCH coefficients

β, (vi) threshold parameters r, (vii) volatility parameters λ.

We describe the procedure below.

(i) Choose initial values for γ, φ, θ, α, β, r, and λ. Start from crude

estimates of mean or mode of the posterior distribution. Generally it

is hard to find a good approximation for mean or mode of threshold

distribution because of unconventional shape of the likelihood func-

tion. For starting values we simply divide the sample into regimes

with equal samples. In case we have two regimes we use the mean

value of yt as a starting point r(0), if there are three regimes we divide

sample into three equal subsamples to find starting values r
(0)
1 and

r
(0)
2 .

Let the started points be denoted by γ(0), φ(0), θ(0), α(0), β(0), r(0),

and λ(0). Given initial values r
(0)
1 , r

(0)
2 , and d the samples {yt} and

{xt} are separated into regimes based on yt−d:










j = 1 yt−d < r1

j = 2 r1 ≤ yt−d < r2

j = 3 yt−d ≥ r2
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(ii) Once the data is separated into regimes given thresholds r and level

λ the model is transformed into arranged ARMA-GARCH model,4

estimation of which using MCMC is standard (see e.g. Nakatsuma

(2000) who used independence chains or Goldman and Tsurumi (2005)

who used random walk algorithm). We draw parameters of ARMA-

GARCH in each regime block by block using random walk Markov

Chain, e.g. parameters of a regression block are drawn for all regimes

separately (using arranged by regimes data) and then are accepted

or rejected jointly in one block. The acceptance rates are controled

by multiplying the variance of the proposal density with a scaling

constant.

(iii) Threshold parameters

We found that standard random walk Metropolis algorithm with con-

stant variance wanders between thresholds and it is very hard to con-

trol the acceptance rate; as a result it takes long time to converge.

Alternatively using estimation on a grid of points between upper and

lower bounds (griddy Gibbs sampling) is also not efficient (in our model

with single threshold and 200 grid points MCMC with griddy Gibbs

takes 20 times longer than using efficient jump MCMC, explained be-

low). Estimation with number of regimes higher than 2 using griddy

Gibbs is impractical.

We suggest to use the following procedure with efficient jump.

Let the superscript, (i), denote the i-th draw. Each threshold parame-

ter r
(i)
j (1 ≤ j ≤ k) can be drawn either in a separate block given other

threshold parameters, or all thresholds {r(i) = (r
(i)
1 , ..., r

(i)
k )} could be

drawn in one block, in the latter case acceptance rate will be lower.

4We construct arranged ARMA-GARCH model in a similar way as Tsay (1989) and
others constructed arranged autoregressive model sorting data yt by regimes.
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We generate

r
(i)
j ∼ N(r

(i−1)
j , stdr

(i−1)
j )

where stdr
(i−1)
j is initially selected as a constant C0, such that the

proposal normal distribution covers all threshold parameter space (e.g,

C0=half-distance between upper and lower bound for each regime).

After sufficient number of draws mmm we set stdr
(i−1)
j equal to the

standard deviation of the sample of accepted draws {r(l)j , l = 1, ..i −
1} multiplied by a scaling constant C. The variance of the proposal

density is therefore proportional to the variance matrix estimated from

the simulation.

stdr(i) = C ∗ stdr({r(l)}), l = n0, ..i− 1

Variance is adjusted using a scaling constant C, so that acceptance

rate is reasonable. Gelman et al. (2004) suggest optimal acceptance

rate of 44% for 1 parameter and 23% for many parameters.

If r
(i)
j does not satisfy the condition

rlowj < r
(i)
j < rupj

where rlowj and rupj are defined so that regimes below and above r
(i)
j

have at least δ % of observations, then generate r
(i)
j again until it falls

within upper and lower bounds. We set δ = 5%.

We accept r(i) = (r
(i)
1 , ..., r

(i)
k )} with probability

a6 = min

{

p(γ(i), φ(i), θ(i), α(i), β(i), r(i), λ(i−1)|data)
p(γ(i), φ(i), θ(i), α(i), β(i−1), r(i−1), λ(i−1)|data)

, 1

}

.

Otherwise set r(i) = r(i−1).

Alternatively, one can construct a separate block and acceptance rate

for each threshold.
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(iv) Elasticity λ blocks

Draws of λ
(i)
j are done similarly to draws of r

(i)
j using efficient jump

with the exception that we set the constraint: λ
(i)
j > 0. In this block

we use the same procedure as Qian, Ashizawa and Tsurumi (2005) for

estimation of CKLS parameter λ in a linear model (1).5

Generate

λ
(i)
j ∼ N(λ

(i−1)
j , stdl

(i−1)
j )

where stdl
(i−1)
j is initially selected as a constant and after sufficient

number of draws mmm we set stdl
(i−1)
j proportional to the standard

deviation of the sample of accepted draws {λ(l)j , l = 1, ..i− 1}.

If λ
(i)
j > 0 we accept λ

(i)
j with probability

a7 = min

{

p(γ(i), φ(i), θ(i), α(i), β(i), r(i), λ
(i)
j , λ

(i)
−j |data)

p(γ(i), φ(i), θ(i), α(i), β(i−1), r(i), λ(i−1), λ
(i)
−j |data)

, 1

}

.

Otherwise set λ
(i)
j = λ

(i−1)
j . given previous draws of other parameters

and λ’s in other regimes (λ
(i)
−j). After all λ’s are drawn we set λ(i) =

(λ
(i)
1 , ..., λ

(i)
3 ).

Alternatively, all λj can be drawn in one block.

As with any standard MCMC procedure, we make N draws of the pa-

rameters in each of the blocks, and we burn the first m draws. Out of the

remaining N −m draws, we keep every h-th draw. We check convergence

by testing that the draws attain mean and covariance stationarity.

2.2 Choice of the model

Estimation of a threshold model involves choice of (i) number of regimes,

(ii) the threshold variable (e.g. yt−d, ∆(yt−d), or Σ
d
i=0|yt−i|/(d+1)) and the

5The focus of this paper is not on CKLS model, but we use it as one of the features of
interest rate models. The main contribution of this paper is efficient jump for estimation
of threshold parameters that eliminates problems associated with other algorithms.
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delay parameter d, (iii) orders of ARMA(p, q)-GARCH(r, s) process in each

regime.

We use several criteria, like significance of coefficients, marginal likeli-

hood, and a modified Bayesian information criterion (MBIC) discussed in

Goldman and Tsurumi (2005). This criterion is a Bayesian analogue of

Akaike information criterion given by

AIC(p, q, r, s, d, nregimes) = −2Σ
nregimes
j=1 ln(Lj(pj , qj , rj , sj , d)) + 2(ν + 1)

where ln(Lj()) is a log-likelihood function for regime j and ν are degrees of

freedom. For the case of nregimes = 2 : ν = 2 ∗ k+ p1 + p2 + q1 + q2 + a1 +

a2 + s1 + s2 + 1, where k is the dimension of xt and is assumed to be the

same in two regimes, p1, p2, q1, q2, a1, a2, s1, s2 are orders of ARMA-GARCH

parameters in regimes 1 and 2 correspondingly and 1 degree of freedom is

given to the choice of delay parameter d. In a similar way we can find ν for

higher number of regimes.

The modified bayesian information criterion is given by:

MBIC = −2 ln m(x) + 2(ν + 1)

where the marginal likelihoodm(x) is computed by the Laplace-Metropolis

estimation and evaluated at either posterior mean or mode.6

For the choice of number of regimes we find the smallest MBIC as well

as perform sensitivity analysis where estimation of thresholds rj is done

without restriction rlow (j) < rj < rup (j). We look at the sensitivity of pos-

terior densities of rj to imposing δ % restriction. If rj is closer than δ % of

observations toone of the neighbouring thresholds, or either upper or lower

bound for the sample {yt} we suspect that number of regimes is less than

was assumed.

6Alternatively one can use Chib and Jeliazkov (2001) estimator of marginal likelihood.
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To test whether the dynamics changes with regime we look at poste-

rior distributions of differences in parameters of interest in upper and lower

regimes. If there is considerable difference in some parameter’s distributions

it supports the hypothesis of non-linearity of series yt.

Finally, the formal test is based on minimizing the modified Bayesian

information criterion when models with 1 regime, 2 regimes, and 3 regimes

are compared.

3 Empirical estimation of interest rate dynamics

In this section we present the results of estimation of the generalized

threshold model (2)-(5) for the U.S. short-term interest rates. The 3 month

T-bill monthly data for the period 1962-2005 was downloaded from the Fed-

eral Reserve Board of Governor’s website.7 As was mentioned we have cho-

sen the threshold variable as yt−d, which makes sense for interest rate mod-

els, as regimes are separated by high and low interest rates. Using model

selection criteria identified in the previous section we found that the best

model has 2 regimes compared to 3 regimes or 1 regime. We estimated

model with and without restrictions of minimum δ = 5% of observations in

each regime and results were identical for the two-regime model. The best

threshold variable turned out to be yt−1 with delay parameter d = 1.

All results of estimation are given in Table 1 and Figures 1-4. The data

are presented in Figure 1(a). We can identify the period of 1979-1982 which

is characterized by high levels of interest rates and high volatility.8 The

posterior distribution of the estimated threshold is given in Figure 1(b) and

the mean value of estimated threshold distribution (10%) is shown on the

7http://federalreserve.gov/releases/h15/data.htm
8Many authors included the period of FED’s experiment 1979-1982 as part of the

sample. For example, PST considered the period 1962-1990.
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graph with data separating yt into two regimes; the upper regime coincides

with historical period of change in monetary policy.

Table 1: Threshold ARMA model with CKLS-GARCH volatility

Regime 1: (yt−1 < r) Regime 2: (yt−1 ≥ r)
mean (std) Corr mean (std) Corr

γ1 0.047 (0.030) 0.447 2.405 (1.545) 0.491
γ2 -0.006 (0.007) 0.442 -0.208 (0.131) 0.507
φ1 0.507 (0.138) 0.918 -0.123 (0.432) 0.886
θ1 -0.129 (0.166) 0.927 0.740 (0.403) 0.876
α0 0.001 (0.000) 0.771 0.029 (0.024) 0.777
α1 0.142 (0.030) 0.796 0.328 (0.215) 0.657
β1 0.835 (0.030) 0.883 0.329 (0.229) 0.826
λ 0.391 (0.130) 0.799 0.638 (0.137) 0.791

ρ=max AR root 0.507 (0.138) 0.918 0.396 (0.212) 0.665

r 10.034 (0.246) 0.315

Notes: (1)ARMA(1,1)–GARCH(1,1) model for each regime was selected
based on MBIC, significance of parameters and convergence
patterns.
(2)Estimated model has n1=483 (93%) observations in the lower
regime and n2=34 (7%) observations in the upper regime.
(3)The figures in parentheses are posterior standard deviations.
(4) Corr is the first order autocorrelation of the MCMC draws.
(5)ρ is the maximum absolute value of the inverse roots of the AR parameters

Some of the results given in Table 1 are similar to results obtained in PST

for the period 1962-1990 (p. 161 Table 2), while certain results are different

as we describe below.9 One of the similar results is that the interest rate

follows a unit root process in the lower regime (yt−1 < r) and the process has

slow mean reversion once the interest rate is above the threshold. The same

results was obtained earlier by Gray (1996) who used a Markov-switching

9We also estimated our model with the same sample as PST (1962-1990) and results
are very similar to the full sample 1962-2005 results presented in the text.
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GARCH model. The pdfs of persistence parameter γ2 in two regimes are

presented in Figure 2(a) and the posterior distribution of the difference in

persistence for two regimes (γ
(1)
2 − γ

(2)
2 ) is given in Figure 2(b). We see that

in the lower regime (regime 1) the pdf is tightly distributed around zero. In

the upper regime (regime 2), the distribution is centered around -0.21 and is

more disperse. The posterior distribution of the difference shows that 85%

highest posterior density interval (HPDI) corresponds to positive values of

differences in γ2, i.e. persistence is higher in lower regime. Using any rea-

sonable significance level, e.g. the 95% highest posterior density interval, we

clearly do not reject the null hypothesis of a unit root for γ2 in the lower

regime. Although for the upper regime using the 95% HPDI we would also

fail to reject unit root (95% HPDI is (-0.468, 0.060)), the variance of this

distribution is high and the upper limit of the 95% HPDI is very close to

zero. Using, for example 87% HPDI (-0.402, -0.002) we would reject the

unit root hypothesis for the upper regime.

Let us test stationarity of interest rates. In each regime the null hypoth-

esis of a unit root is given by either:

H0 : γ2 = 0 versus H1 : γ2 < 0 (9)

or

H0 : ρ = 1 versus H1 : ρ < 1 (10)

where ρ is the maximum absolute value of the inverse roots of the AR

parameters in the error term ut. Rejection of both null hypotheses above

implies stationarity. However, if we find a unit root in the lower regime,

but mean reversion in the upper regime, it would still imply stationarity

since interest rates exhibit mean reversion once they are higher than the

threshold.10

10For a formal definition of stationarity of a two-regime TAR model see, e.g. Frances
and Van Dyck (2000). They explain that a unit root in lower regimes and stationarity in
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Table 1 shows that the max absolute value of inverted roots of AR pa-

rameters (ρ) in the error term is less than 1, so the error term is stationary

in both regimes. Overall, we conclude that interest rates are weakly station-

ary, since the unit root hypothesis in the upper regime was rejected using

87% HPDI, but was not rejected with 95% HPDI.

The posterior pdf of the threshold parameter presented in Figure 1 (b)

with mean value r = 10.03 (see Table 1) is close to PST but the standard er-

ror is significantly smaller. Since we included a GARCH component (which

turns out to be significant in the model) we increased the precision of the

threshold estimator.

Figure 4(a) shows the posterior pdf of a GARCH parameter ab, which

measures the persistence of volatility in each regime:

ab = Σli=1(αi + βi) (11)

where l = max(a, s), αi = 0 for i ≥ a and βi = 0 for i ≥ s. The

posterior pdf for ab can be used to test a null hypotheses whether a GARCH

component is present in the data. The null and alternative hypotheses are

given by: H0 : ab = 0 (i.e. the error process does not have GARCH) versus

H1 : ab > 0 (i.e. the error process has GARCH). In Figure 4(a) we show

the pdfs for ab in each regime and find ab significant in both regimes. The

persistence in the lower regime is close to one, while in the upper regime it

is less than one (using any HPDI). We also show the posterior distribution

of the difference in the persistence in volatility in lower and upper regimes

and find lower persistence in the upper regime using 85% HPDI. If we look

at a constant term in the GARCH model we find that when interest rates

fall they become less volatile (if we compare magnitudes of α0 in regimes

the upper regime implies stationarity of non-linear time series.
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1 and 2 from Table 1), however at lower interest rates volatility is more

persistent. The property that level of volatility is proportional to interest

rates is well-known, however change in persistence is an interesting result.

We may conclude that overall volatility process is stationary, since it is

mean-reverting when interest rates are high and volatility is high.

Finally, we find two similar distributions for level heteroscedasticity pa-

rameter λ in two regimes (presented in Figure 3). HPDI for both distribu-

tions include λ = 0.5. Our estimates of λ are smaller than estimates given in

CKLS and PST and are consistent with results of other studies that omitting

the GARCH component results in overestimating the level effect in volatility

of interest rates.
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(a) 3 month T-bill rate
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 r = 10.03%

Figure 1: (a) U.S. three-month T-bill rate, monthly data, 1962-2005; (b)
Posterior pdf of the threshold parameter r

17



-0.6 -0.4 -0.2 0.0 0.2
0

10

20

30

40

50

60

mean=-0.208 
std=0.131
95% hpdi=(-.47,.06)

mean= -0.006
std= 0.007
95% hpdi=(-.02,.01)

 regime 2

 regime 1

p
o

s
te

ri
o

r 
d

e
n

s
it
ie

s

(a) γ2 in regimes 1 and 2

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

mean= .202
std=.132
95% hpdi=(-.067, .463)
85% hpdi=(.005, .386)

p
o

s
te

ri
o

r 
d

e
n

s
it
y

(b) γ2 (regime 1) - γ2(regime2)

Figure 2: (a) Posterior pdfs of persistence parameter γ2 in regimes 1 and 2;
(b) Posterior pdf of the difference in persistence parameters.

4 Conclusion

We applied MCMC algorithm with efficient jump for a general class of

threshold time series models with multiple regimes that works much faster

than estimation on a grid of points and is simpler than numerical integration

techniques suggested in literature.

We used as example U.S. T-bills data and found that the data can be

characterized by two regimes; the interest rate data process follows a unit

root in a lower regime and a weak mean reversion process above a certain

threshold; the volatility is more persistent in lower regime; the modification

to allow for GARCH error results in more efficient threshold parameter

estimates and lower level effects in volatility.
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Figure 3: (a) Posterior pdfs of elasticity of volatility λ in regimes 1 and 2;
(b) Posterior pdf of the difference in elasticity of volatility parameters.
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Figure 4: (a) Posterior pdfs of persistence in volatility ab in regimes 1 and
2; (b) Posterior pdf of the difference in persistence of volatility parameters.
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