Exploring Heterogeneneity of Treatment Effects using Finite Mixture Models

Partha Deb

Hunter College and the Graduate Center, CUNY NBER

August 2013

• There are many intuitive reasons for expecting that treatment effects are not constant

- In most pragmatic trials in which experimental conditions are not tightly controlled
 - actual treatment is heterogeneous across sites or geographies
 - intensity of treatment (dose) varies
 - compliance to treatment varies by individual or group characteristics
 - effects of treatment varies by biological characteristics

- Heterogeneities in each of these dimensions lead to heterogeneity of treatment effects (HTE).
- When treatment effects are heterogeneous, the typically small benefits found in studies can be misleading because small average effects may reflect a mixture of substantial benefits for some, little benefit for many, and even possibly harmful for a few
- Heterogeneous treatment effects can be categorized into three groups (Gadbury and Iyer, 2000; Gadbury, Iyer, and Albert, 2004; Shen, et al. 2013)

- Let Y₁ and Y₀ be the potential outcomes under the intervention and the control
- Benefit is defined as $Y_1 Y_0 > 0$
- Harm occurs when $Y_1 Y_0 < 0$

- Let Y₁ and Y₀ be the potential outcomes under the intervention and the control
- Benefit is defined as $Y_1 Y_0 > 0$
- Harm occurs when $Y_1 Y_0 < 0$
- Treatment benefit rate $TBR = Pr(Y_1 Y_0 > 0)$
- Treatment harm rate $THR = Pr(Y_1 Y_0 < 0)$
- For the fraction 1 TBR THR of the population, $Y_1 Y_0 = 0$

• TBR and THR may be characterized by a small set of observed covariates in some instances

• TBR and THR are more likely to be determined by complex configurations of observed and unobserved covariates

• When data has been drawn from a finite number of distinct populations but in which the sub-populations are not identified

• A finite mixture model allows one to identify and estimate the parameters of interest for each sub-population in the data, not just of the overall mixed population

Mixture of normal densities

Mixture of normal densities

Mixture of normal densities

• Effects of job loss on BMI and alcohol consumption – Deb, Gallo, Ayyagari, Fletcher and Sindelar, *Journal of Health Economics* 2011

• Effect of prenatal care on birth weight – Conway and Deb, *Journal of Health Economics* 2005

• Price elasticities of medical care use – Deb and Trivedi, *Journal of Applied Econometrics* 1997; Deb and Trivedi, *Journal of Health Economics* 2002 Introduction

イロト イヨト イヨト イ

- Introduction
- Model
 - Mixture density
 - Properties
 - Complications

∃ >

- Introduction
- Model
 - Mixture density
 - Properties
 - Complications
- Example: color of wine
- Application: healthcare expenditures in the RAND Health Insurance Experiment

Model: Common mixture component densities

• The density function for a C-component finite mixture is

$$f(y|\mathbf{x};\theta_{1},\theta_{2},...,\theta_{C};\pi_{1},\pi_{2},...,\pi_{C}) = \sum_{j=1}^{C} \pi_{j} f_{j}(y|\mathbf{x};\theta_{j})$$

where
$$0 < \pi_j < 1$$
, and $\sum_{j=1}^{C} \pi_j = 1$

- Normal (Gaussian)
- Gamma
- Poisson
- Negative Binomial
- Student-t

Model: Basic properties

• The conditional mean of the outcome in a finite mixture model is a linear combination of component means:

$$\mathsf{E}(y_i|\mathbf{x}_i) = \sum_{j=1}^{C} \pi_j \lambda_{ij} \text{ where } \lambda_{ij} = \mathsf{E}_j(y_i|\mathbf{x}_i)$$

Model: Basic properties

 The conditional mean of the outcome in a finite mixture model is a linear combination of component means:

$$\mathsf{E}(y_i|\mathbf{x}_i) = \sum_{j=1}^{C} \pi_j \lambda_{ij} \text{ where } \lambda_{ij} = \mathsf{E}_j(y_i|\mathbf{x}_i)$$

 The marginal effect of a covariate in a finite mixture model is a linear combination of component marginal effects:

$$\frac{\partial \mathsf{E}_{j}(y_{i}|\mathbf{x}_{i})}{\partial \mathbf{x}_{i}} = \frac{\partial \lambda_{ij}}{\partial \mathbf{x}_{i}} \longrightarrow \text{ within component}$$
$$\frac{\partial \mathsf{E}(y_{i}|\mathbf{x}_{i})}{\partial \mathbf{x}_{i}} = \sum_{j=1}^{C} \pi_{j} \frac{\partial \lambda_{ij}}{\partial \mathbf{x}_{i}} \longrightarrow \text{ overall}$$

Model: Basic properties

• Prior probability that observation y_i belongs to component c is often specified as a constant

$$\Pr[y_i \in \text{population } c | \mathbf{x}_i, \Theta] = \pi_c$$

= 1, 2, ...*C*

• It cannot be used to classify individual observations into types

С

• Prior probability that observation y_i belongs to component c is often specified as a constant

$$\Pr[y_i \in \text{population } c | \mathbf{x}_i, \Theta] = \pi_c$$

 $c = 1, 2, ...C$

- It cannot be used to classify individual observations into types
- Posterior probability that observation y_i belongs to component c:

$$\Pr[y_i \in \text{population } c | \mathbf{x}_i, y_{i;} \Theta] = \frac{\pi_c f_c(y_i | \mathbf{x}_i, \Theta_c)}{\sum_{j=1}^C \pi_j f_j(y_i | \mathbf{x}_i, \Theta_j)}$$

$$c = 1, 2, ... C$$

• It can be used to classify individual observations into types

- The number of components has to be specified we usually have little theoretical guidance
- Even if prior theory suggests a particular number of components we may not be able to reliably distinguish between some of the components
- In some cases additional components may simply reflect the presence of outliers in the data
- Likelihood function may have multiple local maxima

Results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars (grape variety)

Data characteristics			
Cultivar	Freq.	% of total	Color intensity (mean)
1	59	33.15	5.528
2	71	39.89	3.086
3	48	26.97	7.396
Total	178	100	5.058

Example: Color of wine

Wine Color Density

• Suppress information on class (cultivar)

• Estimate a Finite mixture of Normals with 3 components

• Use estimates of posterior probabilities to assign observations into one of 3 classes

Estimates from finite mixture of normals with 3 componen			
Parameter	component 1	component 2	component 3
Constant	4.929	2.803	7.548
	(0.334)	(0.244)	(0.936)
π	0.365	0.323	0.312
	(0.176)	(0.107)	(0.117)

Estimates from fini	e mixture o	f normals with	3 compone	ents
---------------------	-------------	----------------	-----------	------

Data characteristics			
Cultivar	Freq.	% of total	Color (mean)
1	59	33.15	5.528
2	71	39.89	3.086
3	48	26.97	7.396
Total	178	100	5.058

イロト イヨト イヨト イ

	Predicted Cultivar				
Cultivar		1	2	3	Total
1	No.	42	3	14	59
	%	71.2	5.1	23.7	100.0
2	No.	15	56	0	71
	%	21.1	78.9	0.0	100.0
3	No.	19	0	29	48
	%	39.6	0.0	60.4	100.0

メロト メロト メヨト メ

• Heterogeneity of insurance effects on healthcare expenditure

- Heterogeneity of insurance effects on healthcare expenditure
- Data from the Rand Health Insurance Experiment (RHIE)
- Conducted by the RAND Corporation from 1974 to 1982
- Individuals were randomized into insurance plans
- Widely regarded as the basis of the most reliable estimates of price elasticities

- Data collected from about 8,000 enrollees in 2,823 families from six sites across the country
- Each family was enrolled in one of fourteen different insurance plans for either three or five years
- The FFS plans ranged from free care to 95% coinsurance
- Data from all 5 years of the experiment
- Number of observations: 20,186

• • • • • • • • • • • • •

	Explanatory variables
IDP	1 if individual deductible plan, 0 otherwise
LC	ln(coinsurance+1), 0 \leq coinsurance \leq 100
LPI	f(annual participation incentive payment)
FMDE	f(maximum dollar expenditure)
LINC	In(family income)
LFAM	In(family size)
EDUCDEC	education of the household head in years
PHYSLIM	1 if the person has a physical limitation
NDISEASE	number of chronic diseases
PHINDEX	index of health (larger is worse)

AGE, FEMALE, CHILD, BLACK

A 3 b

- Estimate a 2-component finite mixture of gamma densities
 - Highlight differences in treatment effects by component (class)
 - Highlight differences in distributions of expenditures by class
 - Explore sources / correlates of class differences
- Estimate a 3-component finite mixture of gamma densities

An observation is classified into class c if p(c|y,x)>0.7)

c=1c=2

- Heterogeneity in treatment effects can be important to identify and explore
- When treatment effects are heterogeneous, the typically small benefits found in studies can be misleading
- Finite mixture models are a useful way to model heterogeneous treatment effects
- FMM can uncover otherwise hidden heterogeneity

- Heterogeneity in treatment effects can be important to identify and explore
- When treatment effects are heterogeneous, the typically small benefits found in studies can be misleading
- Finite mixture models are a useful way to model heterogeneous treatment effects
- FMM can uncover otherwise hidden heterogeneity
- As described, FMM can be applied when outcomes are continuous or discrete
- But not for binary or "severely" limited outcomes
- Extension to collection of binary outcomes is referred to as the Grade Of Membership model