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Overview

Statistical issues - skewness and the zero mass
Studies with skewed outcomes but no zeroes
Studies with skewed outcomes and zeroes
Studies with count data

Finite mixture models

Conclusions

Top Ten Urban Myths of Health Econometrics
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Examples and Characteristics
Examples

Number of visits to the doctor
Number of ER visits
Number of cigarettes smoked per day

Like expenditures / costs
Many zeros
Very skewed in non-zero range
Intrinsically heteroskedastic (variance increases with mean)

Differences
Integer valued
Concentrated on a few low values (0, 1, 2)
Prediction of event probabilities often of interest
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Overview

Studies with count data
Poisson (canonical model)

Estimation
Prediction — Mean, Events
Interpretation — Marginal effects, Incremental Effects

Goodness of fit
Negative Binomial
Hurdle Models (Two Part Models for Counts)
Zero Inflated Models

Model Selection - Discriminating among nonnested models
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Poisson

Mean L =exp(Xp)
Variance o°=exp(X})

Density

_ y
I'(y+1)
Note that I"'(y+1)=y!

Poisson with mean 0.5 Poisson with mean 5
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Estimation

Estimation is usually conducted using Maximum Likelihood

First Order Condition for MLE
olnL O
Y i=1( Yi — Hi ) |

But it is very unlikely that mean = variance property of the Poisson
distribution is satisfied for most health count outcomes

The Quasi MLE for a Poisson regression relaxes the mean = variance
assumption
But has the same first order condition as the MLE

So
,BMLE = :BQMLE
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Estimation

Poisson MLE is robust to misspecification of variance of y, I.e.
ﬂMLE = IBQMLE
In other words, it is okay to estimate a Poisson regression in terms of

point estimates even if the dgp is not Poisson but the weaker QMLE
assumptions are satisfied

But standard errors for £,, ¢ are not correct unless the true dgp is
Poisson (mean = variance)

The sandwich form for Cov(,é) (““robust™) Is appropriate because it
uses only the QMLE assumptions (mean need not be equal to variance)

Stata command: poisson use off age i1.female, robust
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Prediction

The typical prediction of interest is the conditional mean.

But, in nonlinear models, predictions of quantities other than the
conditional mean are often of interest.

In the context of count data, we might be interested in predictions of
the distribution of the count variable

Pr(Y =0| X)

Pr(Y=12| X)

We might also be interested in predictions of certain events of interest
Pr(Y >5|X)=1-Pr(¥Y<5| X)

Substantively

Probability of exceeding a benefit cap (mental health)
Probability of a “drive-through” delivery
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Prediction in Poisson
Conditional Mean: 2 = exp(X )
Stata command: predict muhat (default)

Distribution and events:

e\ Y
pr(Y = y|X )= ZXREH A 0123,
'(y+1)

Stata commands:
predict prhatO, pr(0)
predict prhatl2, pr(12)

predict prhatOto5, pr(0,5)
generate prhatgtb = 1 — prhatOto5
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Interpretation

Marginal Effects - for continuous variables

OE(YilX) _

k
K B i

Examples: Income, Price, Health status

Incremental Effects - for binary variables

E(y|X, X =1)-E(y;|X,X¥=0)
=| mix =0 || exp(5*)-1]

Examples: Treatment/ Control, Insurance, Gender, Race
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FY1: Predictions (at specific X), Marginal & Incremental Effects

Approach depends on research question. How one does it can make a
big difference

1. Evaluate for hypothetical individuals
a. Mean (or Median, other quantiles) of X in sample
b. Mean (or Median, other quantiles) of X in sub-sample of interest
c. Hypothetical individual of interest

2. Evaluate for each individual
a. Average over sample
b. Average over sub-samples of interest

3. For Incremental Effects — (Treatment vs. Control)
a. Switch all individuals from control to treatment
b. Switch controls to treatment
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FY1: Predictions (at specific X), Marginal & Incremental Effects

Stata command for predictions at specific values of X:
margins female

margins, at(age=27)
margins female, at(age=32)

Stata command for marginal / incremental effects:

Be sure to code indicator variables using factor notation (1 . female)
margins, dydx(age)

margins, dydx(*)

margins, dydx(*) at(age=27)

margins female, dydx(*) at(age=27)
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Examples
Data from MEPS

1. Number of office-based visits
2. Number of emergency room Visits
3. Number of hospital nights
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Poisson Estimates

Poisson Coefficients

Office visits ER ViISItS

Hospital nights

Age

1.female

0.005** -0.018**
(0.001) (0.002)
0.328** 0.171%*
(0.027) (0.044)

0.001
(0.004)
-0.044
(0.138)

* p<0.05; ** p<0.01
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Predictive margins from Poisson

. margins female

Predictive margins Number of obs = 19386
Model VCE : Robust

Expression : Predicted number of events, predict()

| Delta-method
| Margin Std. Err. z P>|z] [95% Conf. Interval]
_____________ e
female |
0 | 4,.737476 .1074384 44.09 0.000 4.5269 4.,948051
1 | 6.577042 .0963255 68.28 0.000 6.388248 6.765837
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Predictive margins from Poisson

. margins, at(age=(30 50 70))

Predictive margins Number of obs = 19386
Model VCE : Robust

Expression : Predicted number of events, predict()

1. at : age = 30
2, at : age = 50
3._at : age = 70
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
_at |
1 | 5.170575 .1441185 35.88 0.000 4.,888108 5.453042
2 | 5.729337 .0719968 79.58 0.000 5.588226 5.870448
3 | 6.348482 .1421247 44 .67 0.000 6.069923 6.627041
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Marginal Effects from Poisson

. margins, dydx(age female)

Average marginal effects Number of obs = 19386
Model VCE : Robust

Expression : Predicted number of events, predict()
dy/dx w.r.t. : age 1l.female

Delta-method

|
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
_____________ R
age | .0297709 .0063503 4.69 0.000 .0173246 .0422171
1.female | 1.839567 .1465079 12.56 0.000 1.552416 2.126717

Note: dy/dx for factor levels is the discrete change from the base level.
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Marginal Effects from Poisson

. margins female, dydx(age)

Average marginal effects Number of obs = 19386
Model VCE : Robust

Expression : Predicted number of events, predict()
dy/dx w.r.t. : age

Delta-method

|

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

_____________ R
age |
female |

0 | .024307 .0052005 4.67 0.000 .0141142 .0344998

1 | .0337455 .007205 4.68 0.000 .019624 .047867
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Marginal Effects from Poisson

Poisson Marginal Effects: Office visits

Average Mean of X Median of X
age 0.030** 0.022** 0.021**
(0.002) (0.001) (0.001)
1.female 1.840** 1.402** 1.294**
(0.035) (0.027) (0.025)
Poisson Marginal Effects: ER visits
Average Mean of X Median of X
age -0.004** -0.003** -0.003**
(0.000) (0.000) (0.000)
1.female 0.036** 0.029** 0.028**
(0.007) (0.005) (0.005)
Poisson Marginal Effects: Hospital nights
Average Mean of X Median of X
Age 0.001 0.000 0.000
(0.000) (0.000) (0.000)
1.female -0.028* -0.013* -0.013*

(0.012) (0.006) (0.006)
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In-sample Goodness of fit

Informal / Graphical - compare empirical distribution of y to predicted
distribution

Poisson: Office visits Poisson: ER visits Poisson: Hospital nights
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In-sample Goodness of Fit
Mean Prediction (of distribution) Error

‘J ~
I\/IPE=£Z(fj— f.)
J &

Mean Square Prediction (of distribution) Error
J ~
MSPE =J12(1‘j — f,)°
j=0

J should be chosen to cover most of the support (but not all the values
of the count variable)

Office visits ER visits Hospital nights

(0-20) (0-10) (0-5)

MPE -0.155 -0.002 -0.129
MSPE 30.615 2.705 139.367
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FYI:. Stata code for Poisson goodness of fit measures

preserve
forvalues J=0/20 {
gen bytey jJ" = e(depvar)® == 3"
predict pr_ 3", pr(CJ°)
}
collapse (mean) y * pr_*
gen 1=_n

reshape long yv_ pr_, i(1) j)
graph bar (asis) y pr._

generate pr_diff = (y_ - pr_)*100
generate pr_diff2 = pr_diff?2

mean pr_diff pr_diff2
restore
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Poisson - Summary
Advantages
Robust (asymptotic) to misspecification of variance

Easy to compute marginal effects and predictions

Disadvantages
Not robust in finite samples
Possibly sensitive to influential observations and outliers

Not efficient if variance is misspecified
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Overview

Studies with count data
Poisson (canonical model)

Negative Binomial
Estimation
Prediction — Mean, Events
Interpretation — Marginal effects, Incremental Effects
Goodness of fit

Hurdle Models (Two Part Models for Counts)
Zero Inflated Models

Model Selection - Discriminating among nonnested models
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Negative Binomial

Canonical model for overdispersed data
Mean u=exp(Xp)

Overdispersion — variance exceeds the mean

Var(y[X)=u+ag(u) > u

Negative Binomial-1 Var(y|X)=u+au

Negative Binomial-2  Var(y|X)= u+ a u?
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Estimation

Maximum Likelihood

Stata command for NB-2:
nbreg use off age
nbreg use off age

.female, dispersion(mean)
.female

Note: dispersion(mean) is not required — it is the default

Stata command for NB-1:
nbreg use off age i1.female, dispersion(constant)

Choosing between NB-1 and NB-2
These are non-nested models
Use model selection criteria
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FYI: Negative Binomial-2: Estimates

. nbreg use_off $X, robust

<snip>
Negative binomial regression Number of obs = 19386
Dispersion = mean Wald chi2(21) = 4900.92
Log pseudolikelihood = -49111.723 Prob > chi2 = 0.0000

| Robust

use_off | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
age | .0108457 .0010707 10.13 0.000 .0087473 .0129442
1.female | .4911042 .0264055 18.60 ©.000 .4393504 .5428581

<ship>
_____________ +________________________________________________________________
/1lnalpha | .3581475 .0176417 .3235703 .3927246
_____________ +________________________________________________________________
alpha | 1.430677 .0252396 1.382053 1.481011

. estimates store nb2
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FYI: Negative Binomial-1:Estimates

. nbreg use_off $X, disp(constant) robust

<snip>
Negative binomial regression Number of obs = 19386
Dispersion = constant Wald chi2(21) = 7663.19
Log pseudolikelihood = -48824.428 Prob > chi2 = 0.0000

| Robust

use_off | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
age | .0077678 .0006543 11.87 0.000 .0064855 .0090501
1.female | .3710594 .0153733 24.14 0.000 .3409282 .4011906

<ship>
_____________ +________________________________________________________________
/1lndelta | 2.144767 .0246959 2.096363 2.19317
_____________ +________________________________________________________________
delta | 8.540047 .2109045 8.136526 8.96358

. estimates store nbl
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Negative Binomial: Choosing Between NB2 and NB1

. estimates stats nb2 nbl

Office visits

Model | Obs 11(null) 11(model) df AIC BIC
_____________ gy g g gy gy S g
nb2 | 19386 -52504.62 -49111.72 23 98269.45 98450.51

nbl | 19386 -52504.62 -48824 .43 23 97694 .86 97875.92

Note: N=Obs used in calculating BIC; see [R] BIC note
ER visits

Model | Obs 11(null) 11l(model) df AIC BIC
_____________ +_______________________________________________________________
nb2 | 19386 -10671.19 -9995.,218 23 20036.44 20217.5

nbl | 19386 -10671.19 -10020.41 23 20086.83 20267 .89

Hospital nights

Model | Obs 11(null) 11l(model) df AIC BIC
_____________ +_______________________________________________________________
nb2 | 19386 -10635.45 -10033.9 23 20113.8 20294 .86

nbl | 19386 -10635.45 -9884.171 23 19814.34 19995.41
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NB Marginal Effects

Office visits ER visits Hospital nights
NB-2 NB-1 NB-2 NB-1 NB-2 NB-1

age

0.068** 0.045** -0.004** -0.003** -0.002 -0.003*
(0.007) (0.004) (0.000) (0.000) (0.004) (0.001)

1.female 2.909** 2.073** 0.031** 0.033** 0.214** 0.252**

(0.153) (0.085) (0.009) (0.008) (0.082) (0.033)

* p<0.05; ** p<0.01
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In-sample Goodness of Fit

NB-2: Office visits NB-2: ER visits NB-2: Hospital nights
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Office visits ER visits Hospital nights
MPE 0.046 -0.001 -0.043
MSPE 0.167 0.005 0.883
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Negative Binomial - Summary
Advantages
Much less sensitive to influential observations and outliers

Mean is robust in finite samples

Disadvantages
Distribution is not robust to misspecification of variance

Not efficient if variance is misspecified
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