
Hyperbolic Discounting and the Sustainability of
Rotational Savings Arrangements

By KARNA BASU∗

People across the developing world join rotational savings and credit
associations (roscas) to fund repeated purchases of nondivisible goods.
When the scope for punishment is weak, there is a natural question about
why agents not defect from roscas. This paper models roscas as com-
mitment savings devices and derives conditions under which hyperbolic
discounters will never defect, even in the absence of formal contracting,
social punishment, and reputation. I show why, unlike with standard
commitment devices, a hyperbolic discounter will not postpone entry
into a rosca. Finally, this paper makes predictions about the relative
survival of random and fixed roscas.
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In settings where informational and contractual problems limit the scope of formal
banking, informal financial arrangements may continue to thrive.1 Roscas (rotating sav-
ings and credit associations) are a prominent form of saving in several countries.2 A
rosca consists of a group of individuals who meet at regular intervals and contribute a
fixed amount to a collective "pot", which is then allocated to one of the members. A
rosca "cycle" consists of exactly as many meetings as there are members. Within a cy-
cle, each member gets to take the pot home exactly once. The order in which the pot is
allocated can be determined in several ways. I focus on "fixed" and "random" roscas. In
a fixed rosca, the order is randomly determined at the first meeting of the rosca, and then
repeated indefinitely through future cycles.3 In a random rosca, the order is randomly
determined at the start of each new cycle.

In this paper, I model roscas as commitment savings devices for sophisticated hyper-
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1See Jonathan Conning and Christopher Udry (2005) and Abhijit V. Banerjee and Esther Duflo (2010).
2In Senegal, members of the Tidiane community use them to fund pilgrimages to Mecca. In Philadelphia, women

from the Ivory Coast join roscas to pay for childbirths and funerals. Roscas can be found in several parts of Kenya,
where the money is put to various uses, from home repairs to the purchase of food and clothing. Alec R. Levenson and
Timothy Besley (1996) point out that, in any given year, one-fifth of all households in Taiwan participate in a rosca. F. J.
A. Bouman (1995) cites several studies of African roscas where participation rates among the population are even higher
- for example, 50 percent in the Republic of the Congo and 80 percent in Cameroon.

3At times, other considerations (such as age) may come into play in determining the initial ordering. See, for example,
Siwan Anderson and Jean-Marie Baland (2002).
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bolic discounters. The model allows us to solve some puzzles about the high observed
survival of roscas, and to derive implications for existence and sustainability under vary-
ing underlying conditions. The existing literature on roscas stresses the need for social
sanctions to ensure that participants do not defect.4 One might expect that these sanc-
tions need to be stronger when individuals have present-biased preferences. I show that
this is not the case. In fact, roscas with hyperbolic discounters may survive indefinitely
even without formal contracting or social sanctions. Hyperbolic discounters create their
own punishments for defection – knowing that they under-save in autarky can make them
more likely to stay on in roscas. The model also demonstrates that credit histories, or rep-
utations, are not essential for rosca survival. Finally, I show how the depth of reputation
determines whether fixed or random roscas are more likely to survive.

Following Besley, Coate, and Loury (1993), I assume agents would like to save for a
nondivisible good. If they were to save alone, each would have to wait a certain number
of periods before she could acquire the good. A rosca allows agents to pool their sav-
ings so that some members get the nondivisible good sooner. The likelihood of an early
nondivisible gives agents an incentive to join a rosca. However, as Anderson, Baland,
and Moene (2009) show, members face ex-post incentives to defect. Consider an agent
in a fixed rosca who has just received the pot. If she now leaves the rosca, she can at
least replicate the rosca outcome by saving alone (there is no longer a positive proba-
bility of getting the good sooner through the rosca). In a random rosca, agents have an
even greater incentive to defect. Consider the first-ranked agent in a cycle. There is no
guarantee that she will again be ranked first in the next cycle. If she leaves the rosca after
receiving the pot, she can ensure that she continues to be effectively "first-ranked" by in-
dependently saving just as she would in a rosca. By staying on in the rosca, the agent is
continuing to save at a negative interest rate. Therefore, under standard exponential time
preferences, the threat of punishment must be severe enough that an agent who would
otherwise choose to leave a rosca will now choose to continue participating.

Within this framework, I seek to answer the following questions. First, there is evi-
dence that roscas survive even when formal contracting is impossible and the threat of
social punishment is minimal.5 Why do agents not leave after receiving the nondivisible?
Second, for any given outside option, agents in random roscas have greater incentives to
leave than do agents in fixed roscas. Why do random roscas exist, given that they provide
the same ex-ante utility as fixed roscas? Third, even if the threat of social sanctions can
be used to ensure participation within a cycle, members are free to leave at the end of a
cycle since their debt to the group is repaid. Then, why would the last-ranked member
in a fixed rosca stay on?6 If she were an exponential discounter, she should leave after
a cycle if there is any probability that she will find a rosca that ranks her higher (since,
even if she does not find a rosca, she can save alone and do no worse than in her original

4The theoretical case for this is made by Besley, Stephen Coate, and Glenn Loury (1993) and Anderson, Baland, and
Karl O. Moene (2009).

5Mary K. Gugerty (2007) finds that roscas last several years in settings where sanctions are difficult to impose. In her
dataset, the average rosca is 6.5 years long (around 5 cycles old).

6In addition to Gugerty (2007), Anderson and Baland (2002) provide evidence that fixed roscas survive over multiple
cycles. The median rosca in their sample lasts for 3.2 cycles.
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rosca).
The model below is built on two key assumptions. First, agents have time-inconsistent

preferences and are aware of it. There is empirical evidence that this is indeed the case –
Gugerty (2007) and Olivier Dagnelie and Philippe LeMay-Boucher (2010) find that rosca
members most often cite self-control problems as the reason for joining.7 Second, I take
seriously the fact that roscas are informal institutions that may exist even in environments
where contracting and social networks are weak.8 I assume that participation cannot be
contracted upon and that social punishment is infeasible.

This paper is organized as follows. Section I provides a literature review. Section II
characterizes the autarky equilibrium, and shows how saving slows as agents get more
present-biased. Section III articulates the central logic of rosca sustainability. I assume
there is a single provider of roscas that cannot make credible threats of punishment. The
only enforceable tool is expulsion. In this setting, roscas generate two complementary
benefits for hyperbolic discounters – high expected rank and commitment. The high
expected rank, including the possibility of being an instant winner, ensures that the agent
will not postpone entry. Within the rosca, though there is no positive punishment for
defection, illiquidity and the threat of expulsion create commitment. Illiquidity ensures
that, if an agent participates when she is furthest from her next nondivisible, her future
selves will continue to participate. The threat of expulsion ensures that non-payment
locks an agent in autarky forever. I show that there is a parameter region in which the
agent will always participate and repay the "debt" after receiving the pot. This happens
when she is intermediately hyperbolic – she must be sufficiently time-inconsistent that
her future selves perform better in a rosca than in autarky, but not so time-inconsistent
that she is unwilling to save in the present.

A sophisticated hyperbolic discounter has two objectives: to indulge today, and to
discourage her future selves from doing the same. A rosca, by appealing to her second
objective, gives her a reason to forego instant gratification.

In Section IV, I model roscas as decentralized equilibria by lifting two assumptions of
the benchmark case. Now, agents’ past rosca behavior might not be observable, and new
roscas can be formed over time (in any period, there is an exogenous probability with
which people get matched into new roscas). Agents play a dynamic game and strategies
can be conditioned on reputation, to the extent that it is available. The objective is to
find equilibria that prevent frivolous defection (which would involve leaving one rosca
in search of a higher rank in another). This is a serious consideration, particularly in
developing economies, when information cannot be shared across financial institutions.

This setup provides two further insights. First, it is not necessary for defectors to be
banned from future roscas. If the rate at which new roscas form is sufficiently slow,

7In Dagnelie and LeMay-Boucher (2010), 89 percent of rosca participants cite self-discipline as the motivation. In
Gugerty (2007), 36 percent of rosca participants say self-control is the primary reason for participation. Some quotes:
"You can’t save alone–it is easy to misuse money;" "Saving money at home can make you extravagant in using it." (page
268)

8Even in studies that allude to social sanctions as an enforcement mechanism, there is often limited information about
the precise nature and potency of the sanctions. In light of this, I think it is useful to show that even when sanctions exist,
they may not be necessary. For discussions on sanctions, see Ivan Light (1972), Besley and Levenson (1996), Rogier van
den Brink and Jean-Paul Chavas (1997), and Anderson and Baland (2002).



4 AMERICAN ECONOMIC JOURNAL MONTH YEAR

roscas can survive under complete anonymity. The longer a hyperbolic discounter ex-
pects to remain in autarky while searching for a new rosca, the less likely she is to defect.
Second, I find conditions under which random roscas can be preferred to fixed roscas. To
do so, I model what is perhaps the most realistic reputation environment – "partial repu-
tation". This is the case where only agents who leave without completing a cycle can be
identified and barred from future roscas. This allows us to restrict our focus to agents’
desires to leave between cycles. The last-ranked member in a fixed rosca is permanently
last ranked, so she might have an incentive to leave after a cycle in anticipation of a better
rank in a new rosca. Now, random roscas have a particular advantage over fixed roscas
– by re-randomizing at the start of every cycle, they internalize the attractiveness of the
outside option. There is no incentive for a member of a random rosca to leave between
cycles. Under certain conditions, random roscas survive longer and raise welfare relative
to fixed roscas.

Section V discusses empirical implications of the model and Section VI concludes.

I. Related Literature

Standard explanations of roscas focus on the individual’s desire to save for a nondivis-
ible good. In addition to the papers described above, there is a wide range of descriptive
papers on roscas in several parts of the world.9

Anderson and Baland (2002) find evidence that roscas are used by women to restrict
their husbands’ access to their savings. In their model, women have a greater prefer-
ence for the nondivisible than men, but have limited power over expenditures within the
household. If women were to save at home, their husbands would direct too much of
their savings towards immediate consumption. If women save in a rosca, husbands have
no access to their savings until the pot is received. At this stage, assuming the woman
has sufficient bargaining power to purchase the nondivisible good, it is in fact purchased.
In this setting, a rosca can be viewed as another kind of commitment savings device.
A woman would like to save for the nondivisible, but she knows that saving at home is
suboptimal. A rosca, by locking in savings, allows her to prevent overconsumption by
her household in future periods.

In Section V, I pay particular attention to the analyses in Gugerty (2007) and Anderson,
Baland, and Moene (2009). Gugerty’s study is set in a rural community in Kenya where
banks, if available, are far away, and there appears to be very limited scope for credible
social sanctions. She finds that only 6 percent of members left a rosca is the last cycle
studied. 37 percent of the roscas are fixed, 58 percent are random, and the rest use other
forms of negotiation/randomization. The largest proportions of rosca funds are spent
on cooking items, school fees, and food. Anderson, Baland, and Moene (2009) study a
poor urban neighborhood near Nairobi, where 71 percent of the roscas are fixed and 29
percent are random. They find that funds generated through roscas are more often spent
on nondivisible goods with immediate benefits than on durables.

9See Bouman (1994, 1995), Sudhanshu Handa and Claremont Kirton (1999), and Peter K. Kimuyu (1999).
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Quasi-hyperbolic discounting has been used to describe time-inconsistent preferences
in several papers.10 The fact that these preferences result in a need for commitment has
also been widely studied.11 In the context of this literature, the point of this paper is to
show that roscas are effective commitment devices even without "commitment" in the
standard sense (in settings where agents cannot pre-commit to join and cannot be forced,
through contracts or social punishment, to continue participating).

Finally, there are two aspects of roscas that are worth mentioning even though my re-
sults do not directly relate to them. First, the allocation of pots can also be determined
by an auction. Though these "bidding" roscas are not common in the empirical pa-
pers that motivate this model, they nevertheless feature prominently in many developing
countries. It is possible to conceive of them as risk-sharing arrangements under limited
commitment (see Ethan Ligon, Jonathan P. Thomas, and Tim Worrall 2002). However,
this explanation is less plausible with fixed and random roscas, where the allocation order
is generally inflexible.12

Second, there is the question of efficiency. Besley, Coate, and Loury (1994) argue that
random (and, by extension, fixed) roscas do not result in efficient allocations in general.
Stefan Ambec and Nicolas Treich (2005) show how roscas can be the best possible in-
stitutions, ex ante, when agents value commitment (their paper assumes contracts are
binding and that agents can commit to joining a rosca at a future date). This leaves open
the question of whether, in an environment with hyperbolic discounting and limited con-
tracting, an institution more efficient or sustainable than roscas exists. In the conclusion,
I discuss further whether privately provided services, such as lotteries, can act as substi-
tutes for roscas. However, since roscas do enjoy widespread success, I hope this paper
takes a useful step towards understanding when and why they survive.

II. Autarky Equilibrium

In this section, I assume the individual does not have access to a rosca, and study her
behavior as the equilibrium of a game played by her per-period selves. The agent would
like to save for a nondivisible good. In any period, her saving decision depends on her
discount factor and her expectations of future actions. There are complementarities to
saving – the faster her future selves add to the savings pool, the more she is willing to
save today.

Below, I solve for the equilibrium strategy at different levels of hyperbolic discounting.
Hyperbolic discounters would like to save less in the present but continue to save rapidly
in the future. As they get more present-biased, the gap between ideal future saving and
actual future saving grows. This further reduces current incentives to save. As a result,

10Originally proposed by Edmund S. Phelps and Robert A. Pollack (1968), it has been developed in several papers
including David Laibson (1997), Christopher Harris and Laibson (2001), and Per Krusell and Anthony A. Smith (2008).

11For examples, see Nava Ashraf, Nathalie Gons, Dean S. Karlan and Wesley Yin (2003), Ashraf, Karlan and Yin
(2006), Philip Bond and Gustav Sigurdsson (2009), Karna Basu (2010), and Gharad Bryan, Karlan and Scott Nelson
(2010).

12Some recent papers on bidding roscas include Charles W. Calomiris and Indira Rajaraman (1998), Stefan Klonner
(2003), and Klonner and Ashok Rai (2007).
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equilibrium saving is suboptimal not only from an overall welfare perspective but also
from the perspective of the agent at any point in time. This immediately highlights how a
rosca, by inducing faster future savings, encourages the current self to save more as well.

A. Setup

The agent is an infinitely lived, sophisticated quasi-hyperbolic discounter. She has a
per-period non-stochastic income y, and no initial endowment. Borrowing is not possi-
ble, and no interest is earned on savings. There are two types of goods: a consumption
good (denoted c; price 1) and a nondivisible good (denoted d; price ky, where k is a posi-
tive integer). Saving decisions are lump-sum, in multiples of y.13 The agent’s per-period
utility function is u (c + bd) (where u is strictly concave and defined over the domain
[0,∞), with u (0) = 0; b is a positive constant). Discounted utility at time t is:

Ut = u (ct + bdt)+ β
∞;

i=1
δi u (ct+i + bdt+i) , where β ∈ (0, 1) and δ ∈ (0, 1)

Finally, I assume that the nondivisible good is "desirable":

(1) δk−1u (b) >
k−1;
i=0
δi u (y)

This ensures that, if the agent were an exponential discounter, she would repeatedly save
all her wealth for the nondivisible good (any other saving rule would violate either time
consistency or the condition above).

The individual can be viewed as a series of time-indexed selves with utility functions
{Ut} who play a Markov Perfect Equilibrium.14 In any period, the agent observes her
total wealth, wt , and picks a level of gross saving, st . Wealth and savings are related
in the following way: wt = st−1 + y. Since saving is lump-sum and initial wealth is
0, wt must be a multiple of y. In any state w the action set, {0, y, 2y, ..., w}, includes
all feasible levels of saving. A strategy, π, associates every state w with a sequence of
positive probabilities, {πw (0) , πw (y) , πw (2y) , ..., πw (w)}, that sums to 1 and denotes
a probability distribution over all feasible actions.

We can restrict our attention to the following set of states : {y, 2y, 3y, ..., (k − 1) y}.
Since the nondivisible provides the only incentive to save, and since initial wealth is 0,
there will never be an equilibrium where the agent encounters wealth higher than ky.
The agent with wealth ky will always save 0, regardless of future behavior.

A strategy is an equilibrium if and only if, for any state w ∈ {y, 2y, 3y, ..., (k − 1) y},

13This assumption allows us to model autarky equilibria using mixed strategies over finite choices.
14See Phelps and Pollack (1968) and Krusell and Smith (2003, 2008) for applications of this equilibrium concept to

savings problems under time-inconsistency
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every action s that is played with positive probability satisfies:

s ∈ max
s)∈{0,y,2y,...,w}

d
u
b
w − s)

c+ βδV bs) + y; πce
Here, V is the continuation utility, defined recursively:

V (w; π) =
w/y;
j=0
πw ( j y)

d
v (w − j y)+ δV (( j + 1) y; π)e , where v (x) =

|
u (x) , if x < ky
u (b) , if x = ky

B. Properties of Autarky Equilibrium

Multiple-self models with quasi-hyperbolic discounting can lead to a multiplicity of
equilibria. This section presents some results that allow us to restrict the set of strategies
that are candidates for equilibrium, and predict which equilibrium will be chosen in the
case of multiplicity. At any level of β, there will be an equilibrium that is optimal in
a Pareto sense – it weakly dominates all other equilibria in every state. The optimal
equilibria involve faster saving at higher levels of β, and the equilibrium strategy and
discounted utility are continuous across β. The proofs of the following lemmas and
propositions are in the appendix.

It is helpful to define a few terms. A "saving" strategy (or equilibrium) is one in which
the nondivisible is purchased with positive probability. A "full-saving" strategy is one in
which the agent always saves her accumulated wealth until the nondivisible is purchased.
A "partial-saving" strategy is a saving strategy that is not a full-saving strategy. A "non-
saving" strategy is one in which the nondivisible is never purchased.

Consider any saving strategy. For this to be an equilibrium, the agent must always
weakly prefer to save her accumulated wealth over any smaller amount. It follows di-
rectly from concavity that if an agent with low wealth chooses to save a certain amount,
an agent with higher wealth cannot possibly wish to save any less. The stock must always
weakly rise until ky is reached.

LEMMA 1: In any saving equilibrium, an agent with wealth w will either save w or
mix between w and w − y.

For simplicity, describe any saving equilibrium as π = jπ y, π2y, ..., π(k−1)y
k
, where

π s denotes the probability of saving s. At each w, the following will be true:

(2) βδV (w + y; π) ≥ u (y)+ βδV (w; π)

If πw < 1, then:

(3) βδV (w + y; π) = u (y)+ βδV (w; π)
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It is mechanically true that, for any saving equilibrium:

V (w; π) = πwδV (w + y; π)+ (1− πw) (u (w)+ δV (w; π))
⇒ V (w; π) = πw

1− (1− πw) δ δV (w + y; π)+ (1− πw)
1− (1− πw) δu (y)(4)

For an intuitive understanding of how a saving equilibrium is constructed, consider
an arbitrary saving strategy,

j
π y, π2y, ..., π(k−1)y

k
. In any state w, the agent decides

whether to save w ("save up") or w − y ("save down") by comparing the continuation
utilities associated with each action. A rise in any π−w strengthens the incentive to
save up at w. However, a rise in πw weakens the same incentive. This is because the
punishment associated with saving down gets weakened – if I do not save up today, a
high πw ensures that my future selves will nevertheless save rapidly starting in the next
period. Therefore, for a saving strategy to constitute an equilibrium, πw must be low
enough and π−w high enough to create a weak incentive for state w to save up.

The next three lemmas follow from this. Lemma 2 establishes that, in any saving
equilibrium, the probability of saving up rises as the agent gets closer to the nondivisible.
Lemmas 3 and 4 show that if there are two distinct saving equilibria, one must involve
higher probabilities of saving up in all states, and correspondingly, a higher continuation
utility at all levels of wealth.

LEMMA 2: If π is a saving equilibrium, then 0 < π y ≤ π2y ≤ ... ≤ π(k−1)y ≤ 1.
Furthermore, the probability of saving up must strictly rise until it reaches 1.

LEMMA 3: Let π and µ be two saving equilibria at some β. If, for some w, πw > µw,
then for all w), πw) > µw) or πw) = µw) = 1.

LEMMA 4: Let π and µ be two equilibria at some β. Let π be a saving equilibrium.
If V (y; π) > V (y; µ), then for all w, V (w; π) > V (w; µ).

Proposition 1 consolidates the lemmas to show that an optimal equilibrium always
exists. A saving equilibrium is always better than a non-saving equilibrium, and the
optimal saving equilibrium is the one that involves the fastest saving.

PROPOSITION 1: There is always an equilibrium that is "optimal" in the sense that,
at any level of wealth that is reached in equilibrium, the agent does not strictly prefer to
play any other equilibrium. If saving equilibria exist, the optimal equilibrium is unique
and characterized by the highest value of π y.

Now, any saving equilibriumπ can be characterized by some i ∈ {0, y, 2y, ..., (k − 1) y}
such that πw = 1 for i < w < ky, and πw < 1 for y ≤ w ≤ i (the agent saves up with
certainty in all states above i).

To understand the results of Proposition 2, it is easiest to imagine how equilibrium
changes as β gets smaller. For β values below 1, the agent behaves exactly like an
exponential discounter (full-saving equilibrium) down to β̄ (as defined in Equation A8).
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Once β drops below β̄, the full-saving strategy is no longer an equilibrium – the agent
in state y is sufficiently present-biased that she prefers to save down today if she would
save fully from tomorrow anyway. Below β̄, to create incentives to save, the agent in
state y must play π y < 1. Then, she knows that if she does not save up today, there
is a possibility that she will not even save tomorrow. By worsening the consequences
of saving down today, she again becomes willing to save up. Extending this logic, as β
drops further, there may be a region with equilibria where states y and 2y play a mixed
strategy, followed by a region where states y, 2y, and 3y play a mixed strategy, and
so on. The optimal equilibrium will be characterized by higher levels of i as β drops.
Ultimately, there will be some β such that there will be no saving at β ≤ β. At β, the
equilibrium has the property that π y = 0 and in state y the agent is indifferent between
saving up and down. An explicit lower bound on β is given by β as defined in Equation
A9.15

Let Uw refer to the discounted utility from the optimal equilibrium at wealth w. The
proposition also shows that Uy drops continuously as β drops. Within any region that
supports an equilibrium characterized by a particular i , Uy drops as β drops through
two mechanisms: (a) the future is discounted more, and (b) future selves further slow
down the rate of saving. When i gets bigger, the impact of mechanism (b) gets more
pronounced. Therefore, as β drops (and i rises), Uy drops at increasing rates, down to
β. Below β, mechanism (b) ceases to exist, so Uy no longer drops as sharply. This is
formalized in statements 3 and 4 of the proposition, and depicted visually in Figure 2.

PROPOSITION 2: Let π (β) denote the optimal equilibrium at any β. Then: (1) π y (β)
is continuous and weakly increasing in β; (2) there are values 0 < β < β̄ < 1 such that

π y = 0 if β ≤ β, π y ∈ (0, 1) if β ∈
r
β, β̄

s
, and π y = 1 if β ≥ β̄; (3) Uy is continuous

and strictly increasing in β; (4) Uy is weakly concave for β ∈
r
β, 1

s
, and dUy

dβ is strictly

greater for β ∈
r
β, β̄

s
than for β ∈ bβ̄, 1c.

While it might not be the case that the agent actually plays the optimal equilibrium, this
serves as a reasonable benchmark, especially as it stacks the odds against rosca survival
(the better the autarky option, the lower the agent’s incentive to stay on in a rosca).

III. Roscas as Commitment Devices

A rosca is a group of k people (k as defined in Section II), with one cycle lasting k
periods. The per-period contribution is y. This rosca can be either fixed or random. When
agents are hyperbolic discounters, it is natural to think of roscas as effective commitment
savings devices.

First, consider an agent in a fixed rosca, in the period after which she has received the
nondivisible. Suppose she values the commitment provided by the rosca and chooses to

15β is defined as the point below which the following is true: even if πw = 1 for all w ≥ 2y, there is no positive value
of π y such that the agent in state y will weakly prefer to save up.
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stay. Then, she knows that in all future periods she will continue to stay. This is because,
for every additional period that she participates in the rosca, more of her savings get
locked in (they are consumed by someone else, so there is no way for her to access them).
This argument can be similarly applied to the first-ranked agent in a random rosca. If she
chooses to stay in the rosca in the second period, the lock-in property ensures that she
will always choose to stay.

Second, even if roscas cannot punish members for defection, they can create an ef-
fective punishment mechanism by threatening to send defectors back to autarky. Since
the hyperbolic agent views her future selves as saving too slowly in autarky, she might
strictly prefer to stay in a rosca even when she is furthest away from her next nondivisi-
ble.

Third, a potential entrant into a rosca knows she may be an instant winner. This
gives roscas a specific advantage over pure commitment savings devices and ensures
that agents who value commitment will not postpone entry.

A. Sustainability

I first analyze a rosca that operates according to the following rule: any agent who
leaves can never rejoin any rosca, but cannot be punished in any other way. This can be
interpreted as a case where roscas can only form at some central location, which allows
agents’ past behavior to be monitored.16 While this is admittedly a stylized environment,
it is one in which roscas with exponential discounters cannot survive (and hence allows
us to isolate the mechanism that generates different results for hyperbolic discounters).

FIXED ROSCAS. — For a rosca participant, the rosca is least attractive when she is k − 1
periods from the next pot (for example, consider the last-ranked member in the first pe-
riod of a cycle). The discounted utility from continued participation is βδk−1u(b)

1−δk , denoted
UF . If, in this period, she has a strict incentive to stay on in the rosca, it follows that
she will always have a strict incentive to stay on. If the agent were an exponential dis-
counter, she would lack this strict incentive since there are no social sanctions and she
could replicate the rosca outcomes in autarky.17

Suppose the last-ranked agent is a hyperbolic discounter who is unable to achieve a
full-saving equilibrium in autarky. She would ideally like to pause the rosca for one
period (so she could consume her income today) and continue with rosca participation
from tomorrow (full saving in the future maximizes her continuation utility). Since paus-
ing the rosca is not an option, she faces a trade-off between autarky (high instantaneous
utility, low future utility) and staying in the rosca (low instantaneous utility, high future
utility). If she values the commitment provided by the rosca highly enough that she is
willing to forego current consumption, she will strictly prefer to stay on.

16This assumption in relaxed in Section IV.
17Furthermore, if autarky involved a rising pattern of savings, she would strictly prefer to leave the rosca.
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PROPOSITION 3: Suppose a member of a fixed rosca knows that the other members
will never defect. Then, she always strictly prefers to remain in the rosca iff β ∈ bβ∗, β̄c,
where β̄ is defined in Equation A8 and β∗ lies in

r
0, β

s
as defined in Equation 5 below.

PROOF:
Let the optimal autarky equilibrium at any β be denoted π (β). Recall that the dis-

counted utility from this equilibrium is denoted Uw. If the agent strictly prefers to
stay in the rosca when she is furthest from the nondivisible, she will always strictly
prefer to stay. For β ≥ β̄, Uy = βδk−1u(b)

1−δk = UF , so a rosca is not strictly pre-
ferred. For β ∈ [β, β̄), Uy = βδV (2y; π (β)) (since there is partial saving in au-
tarky) and δV (2y; π (β)) < δk−1u(b)

1−δk (from Condition 1, since autarky does not involve
full saving). This implies that Uy < UF , so a rosca is strictly preferred. For β < β,
Uy = u (y)+ βδ u(y)

1−δ , so a rosca will be strictly preferred iff UF > Uy , or:

(5) β > β∗ ≡ u (y)
δk−1u(b)

1−δk − δu(y)
1−δ

By Condition 1 and Equation A9, β∗ ∈
r
0, β

s
.

Note that roscas are sustainable even in regions with no autarky saving. In the appen-
dix, I discuss how illiquidity and threat of expulsion contribute differentially to commit-
ment across parameter regions.

RANDOM ROSCAS. — The only difference between a random and a fixed rosca is that,
in a random rosca, the ordering is re-randomized at the start of each cycle. A random
rosca is least attractive to the agent who receives the pot in period 1. In period 2, her
expected discounted utility from continued participation is βδk−1u(b)

(1−δ)k , denoted UR . If, in
this period, she stays in the rosca, she will always stay in since this is the furthest from
the nondivisible she can ever be. Note that UR < UF (because δ < 1 and k > 1).

PROPOSITION 4: Suppose a member of a random rosca knows that the other members
will never defect. Then, if δ is sufficiently large, she always strictly prefers to remain in
the rosca iff β ∈ bβ∗ran, β̄ran

c
, where β̄ran ∈ (0, β) and β∗ran is defined in Equation 6

below. Furthermore,
b
β∗ran, β̄ran

c
will be a strict subset of

b
β∗, β̄

c
.

PROOF:
Let the optimal autarky equilibrium at any β be denoted π (β). Note that UR is linear

over β, Uy is continuous over β, Uy > UR at β = 0 and β ∈ [β̄, 1), Uy is linear
and increasing over β ∈

r
0, β

s
, and Uy is concave and increasing over β ∈

K
β, β̄

L
.

Therefore, if Uy < UR at any β, then this inequality must be true for all β ∈ bβ∗ran, β̄ran
c
,

where β∗ran ∈ (0, β) and β̄ran ∈ (β, β̄).
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If such a β∗ran exists, it must satisfy:

(6)
β∗ranδ

k−1u (b)
(1− δ) k = u (y)+ β

∗
ranδu (y)
1− δ ⇔ β∗ran =

(1− δ) u (y)
δk−1u (b)− kδu (y)

By Condition 1, β∗ran > 0 if δ is sufficiently high and limδ→1 β
∗
ran = 0. Since β ≤ β and

limδ→1 β = u(y)
u(b)−(k−1)u(y) > 0, there must exist β∗ran ∈ (0, β) that satisfies Equation 6.

This ensures that, for sufficiently high δ, there will be a region in which an agent always
prefers to remain in a random rosca.

Finally, since UR < UF for β > 0, it must be true that
b
β∗ran, β̄ran

c ⊂ bβ∗, β̄c.
The intuition for the above result is the following: as δ gets large, the agent does not

mind the fact that her rank in the next cycle is uncertain (her expected utility converges
to the expected utility of staying on in a fixed rosca). However, when δ is small, she cares
about the fact that she has to wait particularly long for the next nondivisible. This limits
the range of β values for which she will choose to remain in the rosca. Figures 1 and 2
provide a summary of the results.

  ̄ 10


∗

Random rosca

Fixed rosca

Autarky equilibrium
Full-savingPartial-savingNon-saving

FIGURE 1. COMPARISON OF REGIONS THAT SUPPORT RANDOM AND FIXED ROSCAS

B. Entry and Welfare

A potential problem with commitment savings devices, especially when start dates
cannot be contracted upon, is that the agent might have an incentive to postpone entry.18

18If the agent’s welfare is measured as the discounted utility with β = 1, suppose the welfare maximizing outcome is
the one where she starts saving immediately.
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10 ran
∗ ̄ran


̄∗

U

Fixed (UF)

Random (UR)

Autarky (Uy)

FIGURE 2. WORST-CASE DISCOUNTED UTILITIES FROM FIXED AND RANDOM ROSCAS, COMPARED TO AUTARKY

As O’Donoghue and Rabin (1999) and Basu (2009) show, when tasks are costly in the
present and have delayed benefits, a hyperbolic discounter will procrastinate even though
the welfare-maximizing outcome involves completing the task immediately. Since com-
mitment saving typically entails saving today for future benefits, the agent might wait to
join even if she values the commitment. This problem disappears with roscas because
of the initial randomization in ranking. The possibility of getting the nondivisible in the
current period ensures that the hyperbolic discounter will not want to postpone entry.19

Suppose there is no defection from a rosca once it forms. An agent faces identical
expected values from joining a random or fixed rosca. In each case, she expects to get
the nondivisible once every k periods. The expected value is u(b)

k

d
1+ βδ

1−δ
e
.

PROPOSITION 5: If an agent knows that she will always stay in a rosca once she joins,
she will join in the first period of her life.

PROOF:
Suppose an agent can join a rosca in any period, and knows she will remain in it

forever once she enters. She will join in the first period of her life if she would rather not
postpone by one period:

u (b)
k

v
1+ βδ

1− δ
w
> u (y)+ u (b)

k

v
βδ

1− δ
w
⇔ u (b)

u (y)
> k

19This result relies on the assumption that goods yield immediate benefits. However, even when goods are durable,
agents will be less likely to postpone entry into roscas than into other commitment devices.



14 AMERICAN ECONOMIC JOURNAL MONTH YEAR

This condition does not depend on β and is always satisfied because of Condition 1.
Therefore, hyperbolic discounters will not postpone entry into a rosca.

Since the individual has present-biased preferences, she is tempted by the possibility
of an immediate reward in the same way that she is tempted to overconsume in the
present. If the conditions for rosca sustainability are met, the expected value of the rosca
is sufficiently high that she will choose to join immediately.

IV. Roscas as Decentralized Equilibria

Section III demonstrates that it is possible for a hyperbolic discounter to strictly prefer
to remain in a rosca if reentry is banned. It follows that if all agents in a rosca satisfy the
parameter conditions, then no member has an incentive to leave if others choose to stay.
However, it is reasonable to ask whether permanent expulsion is actually feasible when
social sanctions are not. Given the informational problems associated with enforcing
expulsion, it is conceivable that new roscas are simply unable to learn about past actions
of their members. This section loosens two assumptions. First, the available information
about an agent’s past rosca behavior is allowed to vary. This places a restriction on what
rosca rules can be conditioned on. Second, new roscas can form in any period. The
rate at which this happens is pinned down by an exogenous probability with which rosca
aspirants get matched into groups of size k. In such settings, we might again expect rosca
members to defect not just to play autarky but in search of higher ranks in new roscas.

The new assumptions generate two key results. First, we would like to know how
roscas might survive if permanent expulsion is infeasible. Even under complete anonymity,
roscas can survive if the exogenous probability of finding new roscas is sufficiently low.
This follows directly from the commitment value for hyperbolic discounters. If all agents
were exponential discounters, even an infinitesimal probability of finding a higher rank
in a new rosca would create a strict incentive to leave.

Second, Section III does not provide a reason for random roscas to exist (the greatest
incentive to defect from random roscas is stronger than for fixed roscas, while ex-ante
utilities are the same). In this section, under limited information and fast matching,
random roscas are more resilient than fixed roscas. Suppose we have "partial reputation"
– agents who have left roscas in the middle of past cycles are marked as defectors, but
agents who leave after completing a cycle are not (this is reasonable – we are most likely
to remember those who owe us money). This limits the problem of defection within
cycles, but leaves open the possibility that an agent might wish to leave after completing
a cycle. Now, an advantage of random roscas becomes salient. Since the ordering is
randomized at the start of each cycle, no agent has an incentive to leave a random rosca
between cycles. On the other hand, the last-ranked member of a fixed rosca might still
wish to leave at the end of a cycle, with her reputation intact and the chance to rejoin a
new rosca with a higher expected rank. This gives us conditions under which random
roscas are both more sustainable and more welfare-generating than fixed roscas.20

20This distinction between fixed and random roscas survives even if agents are exponential discounters. It should be
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A. Assumptions

Consider three reputation environments. Under "anonymity", agents’ past behavior
is completely invisible. Under partial reputation, agent’s histories become public to the
extent that others know if they have ever defected from a rosca during a cycle. Finally,
under "full reputation", an agent’s entire past rosca behavior is publicly known (strategies
can be conditioned on whether the agent has ever left a rosca). The better the reputation
environment is, the easier it is for roscas to condition strategies on agents’ past behavior,
thus increasing the sustainability and benefits of roscas.

I assume a large, growing population of identical hyperbolic discounters. For analyti-
cal convenience, I restrict the agents to β ∈

r
β∗, β

s
. In this region, agents value a rosca

and would not save in autarky (so their actions are limited to rosca-related decisions).
Finally, I assume that in any period, an infinitesimal proportion of the population expe-
riences a shock that leaves them unable to save from the current period onwards. For the
purposes of this exercise, we can think of them as becoming fully myopic (β = 0).

TIMING AND STRATEGIES. — There are two rosca "pools" – the pool of agents looking
for a new rosca (New), and the pool of agents who wish to fill an open slot in an existing
rosca (Old). The timing of the game is as follows. Each period is divided into 5 sub-
periods:

a) Agents in existing roscas choose whether to stay (Y ) or leave (N ). Agents who are
not in a rosca choose whether to move to Old (by default, they are in New).

b) Each existing rosca (defined as a rosca with at least one remaining member) with
vacated slots makes rank-specific offers to agents in pool Old. In pool New,
some proportion, p, of agents are randomly matched into groups of size k. (p is
exogenously determined. This is an indicator of how easily people are able to form
groups).

c) Agents accept (Y ) or reject (N ) offers of membership in roscas (in either pool).

d) New roscas randomly determine the ordering. Existing random roscas randomly de-
termine the ordering if a new cycle is starting.

e) Agents in roscas decide whether to stay (Y ) or leave (N ).

If any agent leaves a rosca or rejects an offer, she can only re-enter the pool in the
following period. Any rosca that is unable to fill its slots breaks up and agents re-enter
the pool in the following period.

In any period, the following actions are available to agents: those in an existing rosca
observe their state (profile of other members and distance to the next nondivisible) and

possible to extend the results of this section to settings without time-inconsistency (of course, we would then have to also
introduce some exogenous punishment for defection).



16 AMERICAN ECONOMIC JOURNAL MONTH YEAR

must choose Y or N in sub-periods (a) and (e). Agents who are not in a rosca choose
whether to move to Old in sub-period (a). If they receive an offer, they choose Y or N in
sub-period (c). Finally, in sub-period (e), agents can again choose Y or N after learning
their rank.

A rosca cycle starts in sub-period (d) of period 1 and continues for k periods. Then, for
example, under partial reputation, if an agent leaves in sub-period (c) of cycle 1 (before
the ordering is determined), she does not acquire a reputation as a defector.

A rosca strategy is a rule about how to choose members from pool Old for each possi-
ble opening in a rosca (all members are aware of their rosca strategy). An equilibrium is
an action associated with each information set (for individuals) and a rosca strategy for
each rosca configuration, such that no agent has an incentive to deviate from her strategy
at any information set.

B. Outside Option

The problem of sustainability is directly affected by an agent’s outside option, or the
expected discounted utility from leaving a rosca in any period. When information is
limited, an agent might know that she has a realistic chance of leaving a rosca in which
she has a low rank, and re-entering one with a higher expected rank.

Assume all roscas survive forever. Consider an agent in a fixed rosca who is k periods
away from the next nondivisible. Suppose she is free to leave the rosca and re-enter any
other rosca starting in the next period. If she is certain to get a new rosca (p = 1), clearly
she prefers to leave. We would like to find conditions under which she will not leave her
rosca. The agent will have a strict incentive to stay if p < p∗, where p∗ is defined by:

βδk−1u (b)
1− δk = u (y)+ βδ

⎡⎣ p∗
r

u(b)
k(1−δ)

s
+ (1− p∗) u (y)

1− (1− p∗) δ

⎤⎦
⇒ p∗ =

(1− δ)
r
βδk−1u(b)

1−δk

s
− (1− δ + βδ) u (y)

βδu(b)
k(1−δ) − βδku(b)

1−δk + (δ − βδ) u (y)
(7)

Similarly, consider the first-ranked agent in a random rosca that survives forever. If,
by leaving, she can find a new rosca with some probability p, she will only stay on in her
current rosca for p ≤ p∗ran, where p∗ran is given by:

βδk−1
t

u (b)
k (1− δ)

u
= u (y)+ βδ

⎡⎣ p∗ran

r
u(b)

k(1−δ)
s
+ b1− p∗ran

c
u (y)

1− b1− p∗ran
c
δ

⎤⎦
⇒ p∗ran =

(1− δ)
r
βδk−1u(b)

k(1−δ)
s
− (1− δ + βδ) u (y)

βδu(b)
k(1−δ) − βδku(b)

k(1−δ) + (δ − βδ) u (y)
(8)
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It follows that p∗ran < p∗.

C. Fixed Roscas

Under anonymity, strategies cannot be conditioned on any aspect of an agent’s past
behavior. If there is an opening in a rosca, the rosca simply decides whether to make
an arbitrary offer to a person in the pool. Similarly, an agent has no information about
the other members’ past rosca experience. If p is low enough, there is an equilibrium
with roscas surviving over time. However, if p is high, such an equilibrium cannot exist.
Every agent will have an incentive to leave her rosca immediately after receiving the
nondivisible, as she can consume her income today and join a new rosca with a higher
expected rank in the near future.

Under partial reputation, an agent is marked as a defector if she has left during any
cycle, which is defined as starting after the ordering is randomized in period 1 and ending
after period k (and continuing every k periods after that). Now, the problems associated
with anonymity are alleviated to some extent. It is possible for agents to have strategies
where they refuse to join roscas with defectors (believing that anyone who has done so
is now a β = 0 type). However, such strategies cannot stop the last-ranked member of
a fixed rosca from leaving at the end of a cycle. Since she cannot be distinguished from
those who have never been in a rosca, she will have an incentive to join a new rosca if p
is high enough.

Under full reputation, strategies can be conditioned on whether an agent has left a rosca
in the past, and if so, at what stage of a cycle she left. Here, fixed roscas can be sustained
even with p = 1 since it is possible to have equilibrium strategies that permanently expel
defectors. These results are formalized in the proposition below.

PROPOSITION 6: Consider p∗ as defined in Equation 7. (1) Under anonymity, strate-
gies in which agents always stay in fixed roscas constitute an equilibrium only when
p ≤ p∗. (2) Under partial reputation, strategies in which agents always stay in fixed
roscas constitute an equilibrium only when p ≤ p∗. (3) Under full reputation, strategies
in which agents always stay in fixed roscas constitute an equilibrium at any p.

PROOF:
(1) Suppose p ≤ p∗. Consider the following strategy: Agents in roscas, or with rosca

offers, always play Y ; agents outside roscas always enter New; roscas with openings
randomly make offers from Old. Then, by definition of p∗, the outside option from
defection is sufficiently small that the agent who is k − 1 periods away from the next
nondivisible prefers to remain in the rosca. Under this equilibrium, every group of k
agents that forms a rosca will never separate.

Suppose p > p∗. By the definition of p∗, a rosca cannot survive forever in equilib-
rium: if all agents have a strategy of never leaving a rosca, then any individual who has
just received a nondivisible has a strict incentive to deviate.

(2) Suppose p ≤ p∗. Then, agents can play the same equilibrium strategy as under
anonymity.
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Suppose p > p∗. Roscas cannot last forever with the same membership. Since there
is no strategy that can be conditioned on whether an agent left at the end of a cycle, the
last ranked player has a strict incentive to leave after a cycle if she knows that, in the
future, all agents will stay in a rosca forever.

(3) Consider the following beliefs: Any agent who has ever left a past rosca is now a
β = 0 type. Consider the following strategies: a rosca with openings randomly makes
offers to anyone who has never left a rosca before; agents outside roscas remain in New;
agents in roscas or with rosca offers always play Y unless there is a β = 0 type in the
group. Since any agent who leaves a rosca must play autarky forever, no agent will leave.
The strategies described are an equilibrium, and the beliefs are justified.

D. Random Roscas

Following the arguments above, under full reputation and anonymity, the set of para-
meter values (β, p) at which there is no defection from random roscas is a subset of the
values at which there is no defection from fixed roscas. Under full reputation, both ran-
dom and fixed roscas will survive at any p, but this happens for a larger set of β-values in
the case of fixed roscas. Under anonymity, since p∗ran < p∗ and β∗ran > β

∗, fixed roscas
will survive over both a larger set of β-values and a larger set of matching probabilities.

However, with partial reputation, when p is high, random roscas can survive forever
even when fixed roscas cannot. The intuition for this result is the following. When
p > p∗, there cannot be a fixed rosca in which all agents stay forever, because the last
ranked member would have an incentive to leave. However, there is no such incentive to
leave a random rosca between cycles. Therefore, if β is high enough so that agents within
the rosca prefer to stay rather than play autarky, then random roscas will survive forever,
and any agent’s expected value from a rosca will be higher than it would be under fixed
roscas (see Figure 3).

PROPOSITION 7: Assume partial reputation. If β > β∗ran (as defined in Equation 6),
then random roscas can survive forever in equilibrium. If, in addition, p > p∗, then
random roscas are strictly welfare improving relative to fixed roscas.

PROOF:
Consider the following beliefs: any agent who has left a rosca during a past cycle has

β = 0. Consider the following strategies: a rosca with openings randomly makes offers
to anyone who is not marked as a defector; individuals outside roscas enter New; agents
in roscas or with rosca offers play Y unless any members of the group are marked as
defectors. Since β > β∗ran (as assumed), the first-ranked member will always prefer to
remain in the rosca rather than defect mid-cycle. Therefore, these beliefs and strategies
will constitute an equilibrium in which roscas survive forever.

Now suppose p > p∗. Then, the expected value for any agent entering a random rosca
is: u(b)

k

b
1+ βδ

1−δ
c
. Since there is no equilibrium in which fixed roscas last forever, the

expected value from fixed roscas must be lower.

These results are discussed further in Section V.
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V. Empirical Implications

I now study how the results in previous sections can be related to our empirical under-
standing of roscas. My focus is on implications that directly relate to quasi-hyperbolic
discounting, including comparative statics generated by the model and predictions about
the survival of random and fixed roscas

If hyperbolic discounting is indeed a primary explanation of rosca participation, then
this model predicts that members of long-lasting roscas will exhibit intermediate levels
of time-inconsistency and be aware of their preferences.21 The actual size of the β region
within which roscas survive depends on several parameter values. Consider the bound-
aries of this region as δ gets high: limδ→1 β̄ = k u(y)

u(b) and limδ→1 β
∗ = limδ→1 β

∗
ran = 0.

All else equal, roscas are more likely to survive as the nondivisible gets more expensive
relative to income. Also, roscas are more likely to survive as the utility from small units
of consumption increases relative to the utility from the nondivisible (up to the point
where the nondivisible is no longer valued even by exponential discounters).

In the previous section, we have seen how it is possible for roscas to survive in decen-
tralized settings. The defection incentive is created by the option value of a higher rank
in a new rosca. In environments that are completely anonymous, fixed roscas can survive
forever only if matching for new roscas is sufficiently low. When there is some reputa-
tion, fixed roscas again survive when matching is sufficiently slow, but random roscas
can be welfare-improving when matching probabilities are high. When roscas can ac-
cess more information about an agent’s past rosca behavior, equilibria with repeating
fixed roscas can exist even under perfect matching (see Figure 3).

This gives us some testable predictions. If we conjecture that the likelihood of match-
ing is positively correlated with population density, then p rises as communities get
urbanized. When reputation is informal, the availability of information is likely to be
inversely correlated with urbanization (full reputation is a feature of very small rural
communities, while urban areas are more anonymous). Then, the model predicts that
fixed roscas are more likely than random roscas at fully rural and fully urban extremes.
In semi-rural communities, we are more likely to encounter conditions suited to the sur-
vival of random roscas.22

The Anderson & Baland (2002) study, set in an urban neighborhood, finds that a major-
ity of roscas are fixed. The Gugerty (2007) study, set in rural Kenya, finds that a majority
of roscas are random. These patterns appear consistent with the above predictions, but
we would require more information for a comprehensive analysis.

In this model, the nondivisible good yields a one-period benefit. This is not an unrea-
sonable assumption, since there is a range of empirical evidence suggesting that rosca
members do not spend the money on durable goods. However, it is useful to identify
potential implications for rosca survival if agents save for durable goods instead. When

21Gugerty (2007) and Dagnelie & LeMay-Boucher (2010) provide some evidence in support of this. Tomomi Tanaka
and Quang Nguyen (2010) find that participants in fixed roscas (relative to bidding roscas) are less present-biased but
more sophisticated about their preferences.

22Anderson, Baland, and Moene (2009) make predictions about participation in random and fixed roscas under indi-
vidual heterogeneity. An approach that integrates their predictions with mine is probably feasible and useful.
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FIGURE 3. PARTIAL REPUTATION: TYPES OF ROSCAS (IF ANY) THAT SURVIVE INDEFINITELY IN DIFFERENT PARA-
METER REGIONS

benefits are spread across multiple periods, agents might place less value on immediate
consumption. If this is the case, agents may choose to delay entry into roscas23 but also
be less tempted to defect from one in search of higher ranks elsewhere.

VI. Conclusion

This paper shows that roscas can be effective commitment savings devices even with-
out the threat of social sanctions. Agents with self-control problems derive benefits from
staying in a rosca and improving their savings behavior. The randomization of rank and
subsequent commitment play complementary roles – the first draws an agent into a rosca,
and the second gives her a reason to stay. I also highlight the relative advantages of fixed
and random roscas. Within a cycle, agents in random roscas have a weaker incentive to
stay than they would in fixed roscas. However, between cycles, agents in random roscas
never have an incentive to leave, while late ranked agents in fixed roscas might prefer
to leave if they can join a new rosca. Empirically, both random and fixed roscas exist
in large numbers. This paper makes predictions about the survival of each, based on the
depth of reputation and the speed of matching.

There are several directions for further research. Models that allow for heterogenous
populations (with varying time preferences and saving objectives) are likely to alter the

23O’Donoghue & Rabin (1999) provide one explanation for delayed entry.
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size and structure of roscas and conditions under which they survive in the absence of
contracting. Additional insights might also be gained from endogenizing the matching
speed, p. Also, there is scope for testing the predictions of the model, especially if
convincing measures of time-inconsistency, reputation, and matching speed can be con-
structed.

It is instructive to conclude with a brief discussion of other institutions that could
replicate the wealth-pooling and commitment properties of roscas. Conceptually, the
most natural substitute would be a simple lottery that replicates the deposit pattern and
winning odds of a rosca. Indeed, such an institution has its advantages – by making
each player a potential winner in every period, the question of enforcement is made
irrelevant. Numbers gambling, a long-standing practice in American cities, is one such
example.24 In this game, individuals place small bets on three-digit numbers, after which
the winning number is selected at random. Light (1977), despite concluding that roscas
are more welfare-enhancing than numbers gambling, shows that a common justification
of gambling echoes the rationalization of roscas as commitment devices.25

Nevertheless, there are reasons to believe that the expected value of a rosca is higher
than that of gambling. First, it could be argued that agents are better informed about
their rosca partners than about a gambling organizer. Hyperbolic discounters who know
that their rosca partners share their preferences will be more confident about being repaid
than if they were to sink equivalent sums into anonymous gambles. Second, organiza-
tional costs associated with gambling operations imply that participants make losses in
expectation (according to Light 1977, middlemen charge a commission of 10 percent).
Third, agents might value the fact that a rosca never delivers two pots too close together
or too far apart. This is beyond the scope of my model, but consistent with the idea that
participants save for recurring expenses like school uniforms and household repairs.

It should be noted that the question of lotteries does not apply only to roscas as de-
scribed in this paper. On the contrary, the relative advantages of a lottery become more
salient when roscas consist of exponential discounters, since these roscas require stronger
punishment mechanisms to survive.

Given the resilience of roscas across the world, the idea of viewing them as commit-
ment devices in environments with poor contracting is potentially useful and informative.
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APPENDIX

A1. Proofs for Section II

Equations 3 and 4 tell us that V (w; π) ≤ δV (w + y; π). Combining Equations 2 and
4, we get the following inequalities:
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V (w; π) ≥ u (y)
1− δ

v
πw

t
1
β
− 1
u
+ 1
w

(A1)

V (w + y; π) ≥ u (y)
1− δ

v
πw

t
1
β
− 1
u
+ 1
w
+ u (y)

βδ
(A2)

Furthermore, if πw < 1, we can combine Equations 3 and 4 to explicitly solve for
V (w; π) and V (w + y; π) in terms of πw:

V (w; π) = u (y)
1− δ

v
πw

t
1
β
− 1
u
+ 1
w

(A3)

V (w + y; π) = u (y)
1− δ

v
πw

t
1
β
− 1
u
+ 1
w
+ u (y)
βδ

(A4)

PROOF OF LEMMA 1:
In a saving equilibrium, π y (y) > 0. I show that, if πw (s) > 0, then for allw) > w and

for all s ) < s, πw)
b
s )
c = 0. πw (s) > 0 ⇒ u (w − s)+ βδV (s + y; π) ≥ u

b
w − s )

c+
βδV

b
s) + y; πc. Assume there exist w) > w and s ) < s such that πw)

b
s )
c
> 0. Then:

u
b
w) − s)

c + βδV bs ) + y; πc ≥ u
b
w) − s

c + βδV (s + y; π). Combining these two
inequalities, we get: u

b
w) − s )

c − u
b
w) − s

c ≥ u
b
w − s )

c − u (w − s). This violates
strict concavity of u. Therefore, the assumption must be false.

PROOF OF LEMMA 2:
Suppose there is some πw < 1. From Equation A3, V (w; π) = u(y)

1−δ
K
πw

r
1
β
− 1
s
+ 1
L
.

From Equation A2, V (w; π) ≥ u(y)
1−δ
K
πw−y

r
1
β
− 1
s
+ 1
L
+ u(y)

βδ
. Therefore, πw−y <

πw.

PROOF OF LEMMA 3:
At some w, πw > µw. By applying Equation A2 to πw and Equation A4 to µw, we

know V (w + y; π) > V (w + y; µ) and V (w; π) > V (w; µ). Now assume πw+y ≤
µw+y and πw+y < 1. By applying Equation A3 to πw+y and Equation A1 to µw+y , we
get V (w + y; π) ≤ V (w + y; µ). Contradiction. Also, since πw > µw, by applying
Equation A1 to πw and Equation A3 to µw, we know V (w; π) > V (w; µ). Now
assume πw−y ≤ µw−y . By Lemma 2, µw−y < 1. Applying Equation A2 to µw−y
and Equation A4 to πw−y , we get V (w; π) ≤ V (w; µ). Contradiction. Therefore, if
πw > µw, then for all w), πw) > µw) or πw) = µw) = 1.

PROOF OF LEMMA 4:
This can be proved recursively. Suppose π is a saving equilibrium and for all w < w̄,

V (w,π) > V (w; µ). Then, by Lemma 1 and Equation 2, for all w < w̄, V (w̄; π) ≥
u(w̄−w)
βδ

+V (w; π) > u(w̄−w)
βδ

+V (w; µ). Now assume V (w̄; µ) ≥ V (w̄; π). Then, for
allw < w̄, V (w̄; µ) > u(w̄−w)

βδ
+V (w; µ). Then,µw̄−y (w̄ − y) = 1, so V (w̄ − y; µ) =
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δV (w̄; µ) ≥ δV (w̄; π) ≥ V (w̄ − y; µ). This contradicts the initial assumption that
V (w̄ − y; π) > V (w̄ − y; µ). Therefore, it must also be the case that V (w̄; π) >
V (w̄; µ).

PROOF OF PROPOSITION 1:
At least one Markov Perfect Equilibrium exists (Fudenberg and Tirole, 1991). Next, I

show that there is a complete and transitive ordering across all equilibria. Consider any
two equilibria, π and µ. If π y = µy = 0, then there is no saving in either equilibrium,
so the agent is indifferent between the two. If π y = µy > 0, then it follows from Lemma
3 that they are identical equilibria.

If π y > µy , then from Equation A1, we know V (y; π) ≥ u(y)
1−δ
K
π y

r
1
β
− 1
s
+ 1
L
.

Since µy < 1, we know βδV (2y; µ) ≥ u (y) + βδV (y; µ). Combining this with
Equation 4, we get V (y; µ) ≤ u(y)

1−δ
K
µy

r
1
β
− 1
s
+ 1
L
. So, V (y; π) > V (y; µ). By

Lemma 4, V (w; π) > V (w; µ) for all w. Therefore, equilibrium π will be strictly
preferred in all states.

Using Equation 4 (and since V (ky; π) = u (b)+ δV (y; π)), we know that for w > i :

(A5) V (w; π) = δk−wy u (b)+ δk−wy +1V (y; π)

Applying Equation 3 recursively to each w ≤ i , and combining with Equation A5, we
get the following for each w ≤ i :

(A6) V (w; π) = δk− i
y−1

1− δk− i
y
u (b)−

� i
y

1− δk− i
y
+ 1− w

y

�t
u (y)
βδ

u
Combining Equations A3 and A6, we get an explicit solution for an equilibrium charac-
terized by i :

(A7) πw =
⎧⎨⎩ β(1−δ)

1−β

v
δ

k− i
y −1

1−δk− i
y

r
u(b)
u(y)

s
−
t

i
y

1−δk− i
y
+ 1− w

y

ur
1
βδ

s
− 1

1−δ

w
, if w ≤ i

1, if w > i

Note that, if there is a β interval in which an equilibrium with i exists everywhere, then
πw and V (w; π) are continuous and increasing in β. This is because w ≤ i , so:

i
y

1− δk−i + 1− w
y
> 0

Also, note the following: for w > i , V (w; π) is strictly convex in w. Therefore, in any
equilibrium with i , since βδV (i + 2y; π) ≥ βδV (i + y; π) + u (y), for w > i + y it
must be true that βδV (w + y; π) > βδV (w; π)+ u (y). In other words, for all w ≤ i ,
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the agent is indifferent about saving up; for w = i , the agent is either indifferent or
strictly prefers to save up; and for w > i , the agent strictly prefers to save up.

PROOF OF PROPOSITION 2:
(1)(a) Consider some β̂ at which there is an optimal saving equilibrium π

r
β̂
s
. Then,

at any β̃ > β̂, it must be true that at eachw, β̃δV
r
w + y; π

r
β̂
ss
> u (y)+β̃δV

r
w; π

r
β̂
ss

.
Since (by construction) each V (w; π) is continuous in π and each π x is bounded above
by 1, there must be an equilibriumπ

r
β̃
s
≥ π

r
β̂
s
. By Proposition 1, this will be strictly

preferred to any equilibrium with π y < π̃ y. Therefore, whenever a saving equilibrium
exists, the optimal equilibrium strategy is weakly increasing in β.

(b) Consider some β̃ such that π y

r
β̃
s
> 0. Then, the equilibrium is associated with

some ı̃ . I prove left-continuity ofπ at β̃. Suppose, under this equilibrium, βδV (ı̃ + 2y; π) >
βδV (ı̃ + y; π)+u (y). In other words, whenever there is full-saving, this is strictly pre-
ferred. From (1)(a), we know that for β < β̃, the optimal equilibrium must satisfy
π (β) ≤ π

r
β̃
s
. Then, the best possible equilibrium will be characterized by i . Consider

a strategy where π (β) is determined by Equation A7. Since V (w; π) is always contin-
uous in π and each πw is continuous in β, there must be an interval

K
β̂, β̃

L
in which this

strategy is an equilibrium (in this interval, atw > ı̃ the individual strictly prefers to save,
and at w ≤ ı̃ , Equation A7 yields each πw > 0).

Suppose, under this equilibrium, βδV (ı̃ + 2y; π) = βδV (ı̃ + y; π) + u (y). Then,
this strategy can identically be characterized by j = ı̃ + 1, such that βδV ( j + 2y; π) >
βδV ( j + y; π)+u (y). Repeating the argument above, there must be an interval

K
β̂, β̃

L
in which a strategy satisfying Equation A7 for j exists and is an equilibrium.

(c) Consider some β̃ such that π y

r
β̃
s
> 0. Then, the equilibrium is associated with

some ı̃ . I prove right-continuity of π at β̃. Let j be the highest value of i that char-
acterizes the optimal equilibria at β > β̃. Assume j < ı̃ . Consider some β̂ > β̃ at
which a j-equilibrium is optimal. Then, a j-equilibrium exists for all β in (β̃, β̂]. Then
lim

β→β̃+ π (β) = α > 0. Then, at β̃, there must exist a j-equilibrium with π
r
β̃
s
= α.

Then, the i-equilibrium could not have been optimal. Contradiction. Therefore, there
must be an interval

K
β̃, β )

L
in which the optimal equilibrium is characterized by ı̃ . By

Equation A7, π (β) is continuous in β in this interval.
(d) Consider some β̃ such that π y

r
β̃
s
= 0 (the optimal equilibrium is non-saving). I

prove continuity of π at β̃.
By part (a), left-continuity of π y is automatically satisfied. If there is an interval to the

right of β̃ where the optimal equilibrium is non-saving, then right-continuity is satisfied.
If not let j be the highest value of i that characterizes the optimal equilibria at β > β̃.
Consider some β̂ > β̃ at which a j-equilibrium is optimal. Then, a j-equilibrium exists
for all β in (β̃, β̂]. Let lim

β→β̃+ π y (β) = α. Assume α > 0. Then, at β̃, there must
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exist a j-equilibrium with π y

r
β̃
s
= α. Then, the non-saving equilibrium is not optimal.

Contradiction. Therefore, our assumption is wrong, and α = 0. This proves continuity
of π y (β) at any β̃ where the optimal equilibrium is non-saving.

(2) (a) Define the full-saving strategy asµ ≡ (1, 1, 1, ..., 1). By construction, V (w; µ) =
δk−wu (b)+ δk−w+1V (y; µ) is strictly convex in w. So, µ is an equilibrium iff:

(A8) βδV (2y; µ) ≥ u (y)+ βδV (y; µ)⇔ β ≥ β̄ ≡ 1− δk

δk−1 [u (b)]
· u (y)

1− δ

By Condition 1, 0 < β̄ < 1. Therefore, a full-saving (i = 0) equilibrium is optimal at
β ∈ [β̄, 1).

(b) From 1(d), above, we know the optimal equilibrium will be no-saving for β ∈
(0, β], where β < β̄. Consider the strategy µ ≡ (0, 1, 1, ..., 1). Define β as the point at
which the agent at wealth y is indifferent between saving and not saving at wealth y:

(A9) βδV (2y; µ) = u (y)+ βδV (y; µ)⇒ β = u (y)

δk−1u (b)− (δ−δk )u(y)
1−δ

β > 0 and is a lower bound on β. Therefore, 0 < β < β̄.

(3) Consider any β̃ such that π y

r
β̃
s
> 0. Since π is continuous at β̃, and since by

construction V (w; π) is continuous inπ, and since Uy = βδV (2y; π), Uy is continuous
in β.

Consider any β̃ such that π y

r
β̃
s
= 0. Since, for all β < β̃, Uy = u (y)+βδV (y; π) =b

1+ βδ
1−δ
c

u (y), Uy is left-continuous in β. For β > β̃, either non-saving equilibrium
continue to be optimal (in which case Uy is continuous) or there is a saving equilibrium
with lim

β→β̃+ π y (β) = 0. If the latter is true, then limβ→β+ Uy = β̃δV (2y; π) =
u (y)+ βδV (y; π). This proves continuity of Uy .

(4) Observe the following: If β ∈ (0, β], Uy = u (y) + β δu(y)1−δ ; if β ∈
r
β, β̄

s
, Uy =

βδV (2y; π) = β δ
k− i

y

1−δk− i
y
u (b) −

t
i
y

1−δk− i
y
− 1
u

u (y); if β ∈ [β̄, 1), Uy = β δ
k−1u(b)
1−δk .

Since i is weakly dropping in β, and since δ
k− i

y

1−δk− i
y

is strictly rising in i , Uy is strictly

increasing and weakly concave for β ∈
r
β, 1

s
. Furthermore, for β ∈

r
β, β̄

s
, dUy

dβ is
greater than for β ∈ [β̄, 1).

A2. Source of Commitment

A natural question in Section III is: what exactly about the rosca provides commit-
ment to the hyperbolic discounter? A rosca comes with (1) the threat of being barred
for non-payment and (2) illiquidity of savings. We can consider two alternative com-
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mitment savings devices that separately perform these functions: a friend who promises
to monitor your saving and credibly threatens to stop helping if you under-save, and a
fixed-deposit that locks up your savings until you reach a target amount (in this case, ky).

In the
r
β, β̄

s
range, illiquidity plays no role, since even in autarky the agent never dips

into her savings. As long as we are in a region where some saving occurs in equilibrium,
access to a fixed deposit cannot improve savings behavior. Here, a fixed rosca is very
similar to a friend who offers to "help". The fact that the rosca can offer a credible
threat to deny access to defectors creates a large enough utility gap between the rosca
and autarky equilibria to ensure participation.26

At lower levels of β, the illiquidity provided by the rosca can play a role. Consider the
region in which an agent stays in a rosca but would not save in autarky (β < β):

βδk−1u (b)
1− δk ≥ u (y)+ βδu (y)

1− δ
Now, suppose the agent had the helpful friend instead of the rosca. The above condition
might no longer be sufficient to ensure cooperation. She would also need to ensure that
at wealth 2y she did not have an incentive to consume everything:

βδk−2u (b)
1− δk ≥ u (2y)+ βδu (y)

1− δ
If u is not very concave, and δ is high, then the second condition can fail even if the first
is satisfied. With δ high, the agent does not benefit as much from being one period closer
to the nondivisible. If u is almost linear, the benefit of consuming 2y can be enough to
outweigh the fact that she will no longer save in the future.27 However, even when the
illiquidity plays a role, this does not make the contracting aspect of a rosca irrelevant.
With a fixed-deposit instead of a rosca, the agent might simply not deposit any money in
subsequent periods.

26An individual’s ability to play history-dependent equilibria with her future selves is limited by the fact that, if she
were to deviate from her equilibrium path, she could easily renegotiate with herself to not play the punishment strategy.

27One could expand the region in which illiquidity plays a role if there is either an intermediate "temptation" good or
if income is stochastic. In each of these cases, the agent will have a greater incentive to dip into her savings in autarky,
and she might therefore further value the fact that a rosca will prevent her from doing so.


